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Game theory and Supply chain Management




Game theory and Supply chain Management:

In an operational sense, a supply chain management (SCM) consist of the
management of a network of facilities, the exchange of communications,
distribution channels, and the firms that procure materials, transform these
materials to intermediate and finished products, and distribute the finished
products to customer.

However, in an organizational sense, a supply chain (SC) includes a broad
variety of collaborative agreements and contracts among independent
enterprises, which integrate them as collaborative networks. These
enterprises normally pursue conflicting goals extend across production,
purchasing, inventory, transportation and marketing



Game theory and Supply chain Management:

we emphasize the growing concerns of supply chain management from intra-industry and self-
management to include a far greater complexity based on intrinsically more global approaches and the

elements that define a supply chain .
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Game theory and Supply chain Management:

# Game theory is Multiple-objective Decision making (MODM) with
multiple decision makers.

In Game theory objectives have interconnections with
each others.

Each decision maker has an objective (or payoff) over specific feasible
solution area.

feasible solution for DMs can be separate or common.
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Game theory and Supply chain Management:

# Game theory terminology and its application to Supply chain
management

o System wide optimal or optimal values for integrated system
o Nash equilibrium

o Stackelberg equilibrium

o Cooperation

o Potential Coalition

o Symmetric or Asymmetric information




Game theory and Supply chain Management:

% System wide optimal or optimal values for integrated
system

o When all players integrate and constitute a unit, they have a
unique payoff (objective).

o The optimal value regarding this system is called system wide
optimal.

o In SCM, system wide optimal shows total ideal value that can
be achieved, if a complete coalition is performed.

o Separate optimization of the objectives by players (independent
firms) yields a decrease from system wide optimal, which is
called double margination effect.
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# Nash equilibrium (discrete or continues strategies)
o Discrete case (In zero sum games)

A Seob
The Gain to Plaver 1 = The Loss of Plaver 2 I 8 1
The pay off matrix to B (or a loss to A) \ = 7 =iy
B S5b0 Y w f .
¥ —~Y —F \Y

This problem has a solution, called a (Nash equilibrium) or saddle-point, because
the least greatest loss to A is equal to the greatest minimum gain to B.
(i.e. maximin( For player B)=minmax(player A)).

When this is the case, the game is said to be stable, and the pay-off table is said to
have a saddle-point.

This saddle-point is also called the value of the game, which is the least entry in
its row, and the greatest entry in the column.




Game theory and Supply chain Management:

* Nash equilibrium (discrete or continues strategies)
o Discrete case (In zero sum games)

A S\

~ N . vage D )
The Gain to Plaver 1 = The Loss of Plaver 2 I 11 111

Note that:

1. Not all games can have a pure, single strategy, saddle-point
solution for each player.

2. When a game has no saddle point, a solution to the game can
be devised by adopting a mixed strategy.




Game theory and Supply chain Management:

# Nash equilibrium (discrete or continues strategies)
o Discrete case (Non-zero sum games)

The Gain to Plaver 1 # The Loss of Plaver 2

B
B, B, B. There is a unique Nash equilibrium
- = ' solution (or Saddle point)
A\ \o ,f \ ,O* Q/\;f
A Ay | 4T )Y 99,A
Ar | VAR | et 1ee AN

B:
There is no single Nash equilibrium ?\ - By va
solution (Saddle point). B Vg B P PR
. . *
Mixed strategies should be used. A Ay | ==Y | o0 o
A\‘ -4, ) o* | g Fagh [ B




Game theory and Supply chain Management:

# Nash equilibrium (discrete or continues strategies)

o Continues case (An optimization problem (NLP) with multiple
variables)

Our challenge in SC optimization with regard to Nash equilibrium include :
1. Existence of Nash equilibrium
2. Unique of Nash equilibrium

Theorem 1.2.3 Let f : C' x D — R be a continuous function. Let C C R™ and
D c R™ be convex, closed, and bounded. Suppose that x — f(x,y) is concave and
y — f(x,y) is convex. Then

v" = minmax f(z,y) = maxmin f(z,y) = v~ .

yeD zeC xeC yeD
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# Nash equilibrium (discrete or continues strategies)

o Continues case

For an example, suppose we look at
flz,y) =4day — 2z -2y +1on0 < z,y < 1.

This function
concave in z {
bounded, von
function. To fi
1s the matrix o

o
1

| A T O T

0.5

(I Y |

g
o

Since det(H)
y=1)isa

. S
<,--)llllcl’-‘llll

I
—_

y for each z and
1are is closed and
ddle point for this
ssian for f, which

deulus that (z =
ture of f :




Game theory and Supply chain Management:

# Nash equilibrium (discrete or continues strategies)

o Continues case (An optimization problem (NLP) with multiple
variables)

If strategy sets are not constrained and the payoff functions are continuously
differentiable. The first-order (necessary) optimality condition results in the
following system of two equations in two unknowns v,*, yz*:

5"IJ-I (.1:,{ i .1’:3 *)

-

C’T A

ﬁj& (}'!_4. $'- Ve )

CVg

=0 and =0,

ya=r4* rg=xg*

In addition, the second order (sufficient) optimality condition which ensures
that we maximize the payoffs is

<.

@2"’!1(.};4 '._,1':3 $) 52,_}3 (.v{*r,.1"13)
= 2 Ya=ra® <0 and B 2
oy, B

vp=yg*

Equivalently, one may determine v} (v,)=argmax{J,(v,,v,)} for each
yasTy

vze Y, to find the best response function. 1v,=v%(y,). of player 4 and of
player B, vz=v; (v,) which constitute a system of two equations in two

unknowns.




Game theory and Supply chain Management:

s Stackelberg equilibrium

o Stackelberg strategy is applied when there is an asymmetry in power or
in moves of the players.

o As aresult, the decision-making is sequential rather than simultaneous
as is the case with Nash strategy.

o The player who first announces his strategy is considered to be the
Stackelberg leader.

o The follower then chooses his best response to the leader’s move.

o The leader thus has an advantage because he is able to optimize his
objective function subject to the follower’s best response.
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s Stackelberg equilibrium

In a two-person game with plaver A as the leader and plaver B as the fol-
lower, the strategy v,*< Y, is called a Stackelberg equilibrvium for the
leader if, for all v,

JA (.v,.;_ *, _}":: (_1:_{ $)) = J_a (J"_a » T§ [:-]"1-'1 D !

where vg = vy (v,) is the best response function of the follower.

Definition 2.2 implies that the leader's Stackelberg solution is
v, *=argmax{J,(v,.v; (¥,)}.
y4€¥y
That 1s. 1f the strategy sets are unconstrained and the payoff functions are

continuously differentiable, the necessary optimality condition for the leader
1s

5"In‘. (.1:_{ ? .1;; (.VA )

To make sure that the leader maximizes his profits, we check also the
second-order sufficient optimality condition

T, (v, . vE(y)
o,

- A4

=0.

Y4=¥4*

i
YA=¥4"




Game theory and Supply chain Management:

s Cooperation and coordination in supply chain management

# |t is easy to verify that Nash and Stackelberg equilibriums yield
objective values lower than system wide optimal.

# Therefore, each SC utilizes some mechanisms to achieve all or part of
system wide optimal when partners work independently.

# Cooperation has different aspects as follows:

#  Information sharing among SC’s partners,
#*  Revenue sharing,

#  Discounts,

#  Incentives and rebates,

#*  Returns mechanisms,




Game theory and Supply chain Management:

3 Coalition

3%

Coalitions form in order to benefit every member of the coalition so
that all members might receive more than they could individually on
their own.

However in coalition mathematics, we try to determine a fair allocation
or benefits of cooperation among the player to each member of
coalition.

A major problem in cooperative game theory is precisely define what
fair mean.

So that we determine the value of cooperation of each member in a
coalition and then the extra value earned by coalition is divided based
on these values to the members.
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% Symmetric or Asymmetric information

# Static and differential games




Game theory and Supply chain Management:

= Cases of Supply chain games

* Pricing games

# Production games

% The stocking games

#* The outsourcing games
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Supplier: w

# Pricing games

qOw+m)

The supplier’s problem

Retailer: m

max J;(w,m)=max (w-c)g(w+im)

s.1.
w=c.

The retailer’s problem
max J.(w.m)=max mq(w+im)

S.1.
m=0,
g(w-+m) = 0.

The centralized problem

max J(im.w)y=max [ J.(m,w)+ J.(mw)]=max (w+m-c)g(w+m)

s.1.
m =0, glw+m) =0.

Figure 2.1. Vertical pricing competition
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# Pricing games

System-wide optimal solution

Supplier: w

f

w q(w—m)

r

Retailer: m

Figure 2.1. Vertical pricing competition

We first study the centralized problem by employing the first-order opti-

mality conditions

cJ(m.w)

A
=qg(w+m)+(w+m-c) _ﬂga(p) =0,

om P
= . r
—'5‘;(23’ w) =g(w+m)+(w+m-c) %q(p) =0.
ow

oq9(P*)
cp

q(p*)+(p*—c)
pE=wt+m

() _24(p) , 24P)
op’ op  op op’

0°q(p)




Game theory and Supply chain Management:

Supplier: w

f

w q(w—m)

# Pricing games

Game analysis :
Retatler: m
oJ, (mw) eq(p) _
T - q(“ +17 ”) +in f'p =0. Figure 2.1. Vertical pricing competition
cJ_(m, +
o7.mw) _ =qg(w+m)+(w-— )DQ(“ m) =0.
ow

It is straightforward to show that both supplier's and retailer’s payoff
strictly concave on w and m, respectively.

As a result the Nash equilibrium point are achieved by Solving two above
equilibrium which result in:

Cg(c+ 2m)
p

=0.

w-c-m=0 and g(c+2m)+m
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# Pricing games

Stackelberg game analysis

Next, we assume that the supplier makes the first move by setting the
wholesale price. The retailer then decides on what price to set and, hence,
the quantity to order.

J.(mw)=(w-c)g(w+m®(w)).

Differentiating the supplier’s objective function we have

oJ (m.w) .
——=qg(w+m (W) +(w-c
=4 (W) o

eq(w+m) ém™ (w)

=0,

em™ (w)

where 1s determined by differentiating (2.8) with m set equal to

ow
R (w).

eq(w+m) om” (11’)) . em™ (w) dq(p) . &°g(p) 1+ em™ (w)

(1+— ;

cp ow ow cp cp cw

Thus

o (w) _lf:q(wrm) cq(n +11) i/
\

ow p o’ )

)=0.

g (w+m) @q(ﬂ +nﬂ q(ﬁ +H?)
ap cp

| 216)




Game theory and Supply chain Management:

# Pricing games
Stackelberg game analysis

we conclude that a pair (wg,m,) constitutes a Stackelberg equilibrium of the
pricing game if there exists a joint solution in w and m of the following

equations
cglw+m) ém
gw+m)+(w—c) 9 ) — =0,

cp ow

Cag(w+m

g(w+m)+m 9 ) =0,
ap
where

-

cm féq(wﬂu) Hﬁﬁjg(wﬂu) \“
af \ @} @)2 J

E{ w+m 3 w4+m 52 wW-m !
9( )+oq( )+m q( : )i
ép

p 2

",




Game theory and Supply chain Management:
* Pricing games
An example

Let the demand be linear in price. ¢(p)=a-bp and the supplier’s cost negli-
gible, ¢=0. Thus we obtain the problem solved in Example 2.1. Note that

-

oq 0"
the demand requirements, T =—b <0 and q

cp op’
function. Using Proposition 2.2. we solve (2.15).

< ( are met for the selected

, cqg(2m” : :
qg(2m™)+m" j(ﬂ ) =a—-b2m" +m"(=b)=0,w'=m"
cp
. L e ol . R
to find Nash equilibrtum w'= m'= —. hence. p'= w'+ m =— and
3D 3D
q(p")=—. as 1s also the case in Example 2.1. The payoff for the equilibrium

-

is identical for both players. J,.(m".11'")=L(m".11'")=g—b.




Game theory and Supply chain Management:
* Pricing games

An example
verify that the Stackelberg solution 1s the same as in Example 2.2,
a a . . 3a .a
W=—. m=—_p=w+m=—_,qp )= —.
2b 4b 4b 4
2 2
J(m" w)= € and J(m’ w’ )=ﬁ— .
8b 16D

Finally, the centralized solution (2.7) (see also Example 2.3) is

a(p*) + (p*—¢) 8P~y ppspr(by=0,

-

that 1s.

a
mE+wr= pF = —

2b 2 4h




Game theory and Supply chain Management:
* Pricing games
An example

Conclusions:

1. Final price of products increase due to vertical competition
between supplier and retailer.

2. Total demand of market decrease due to vertical

competition between supplier and retailer.

These effect is called double margination.

Double margination deteriorates supply chain efficiency.

Cooperation between supplier and retailer can improve

SC’s efficiency.

L




Game theory and Supply chain Management:

Pricing games

we observe that the supplier ignores the retailer’s margin m when
setting the wholesale price. The remaining question is how to
Induce the retailer to order more, or the supplier to reduce the
wholesale price, I.e., how to coordinate the supply chain and thus
Increase its total profit.

Of course, the supplier may set the wholesale price at his marginal
cost, w=c, or the retailer may set his margin at zero. In this
situation the SC is perfectly coordinated.

However, the supply chain member who gives up his margin gets
no profit at all. The most popular way of dealing with such a
problem is by discounting or by collaboration for profit sharing.

Profit sharing can obtained by Fixed fee charge by retailer.
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Production games
Now we shall study the effect of horizontal production competition

Supplier 1: g, Supplier 2: g

=

Retailer: fp(g:+q.)

l plgitga)

Figure 2.3. Horizontal competition for the same retailer

Consider two manufacturers producing the same or substitutable
types of product over a period of time and thus competing
horizontally for the same customers, possibly for the same retailer.

Accordingly, the manufacturers are suppliers with ample capacity
and the order period is longer than the supplier’s lead-time.



Game theory and Supply chain Management:
* Production games

% we assume that the retail price is a function of customer demand
which is referred to as Cournot’s model of production competition.
Specifically, the product is characterized by an endogenous

% price function of total demand Q=q,+d,, p=p(Q), which, since the
products are fully substitutable, is symmetric in g, and g,. We
assume that this symmetric function is down-sloping (concave) in

the total quantity of the products, i.e. op/oq, op/oq,<0, and concave
je. @ p @p 0
dg17' g, 0g18g,
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Supplier 1: g, Supplier 2: g,

The problem of supplier 1

ni?xil(qu}z)=ﬂlq?:~i q1[p(q1+q2)-c]

s.1.
¢1=0. p(q1+q2) =c.

The problem of Supplier 2
max J>(¢1,¢2)= max g.[p(q:+q-)-c]
a2 q2

s.1.
7:z0.p(q1+q2) = c.
The centralized problem
max J(¢,,4>) :1;1'3?‘1 [J1(q1,¢2)72(q1,.q2)]=
1.42

q1.92

max ¢;[p(q1+q>)-c]+ q:[p(q1+42)-c]

q1.92
5.1
7120.¢:=0. p(q:1+q2) zc.

~

Retailer: Gp(g,+q-)

l plgitaa)




Game theory and Supply chain Management:
s Production games

System-wide optimal solution

Define Q' so that p(Q')=c. Then it is easy to Verify that.
?2 -«2 12
oq,” 0Oq, oqloq_, CQ o0’ oQ’

<0.

This implies that the Hessian of J(¢,,¢>) 1s semi-definite negative and thus
the function J(¢q,,q¢>) 1s jointly concave in production quantities ¢; and ¢,

for ql +q2 E[O'Q]

total order O matters mn terms of optimality. Considering the symmetric
solution to the above system of equations as well, g*= ¢,*=¢-*. we obtain
the following equation

Y ) —

« PRI _ (2.20)

20%)—c+ 2
p(2q%) q 20




Game theory and Supply chain Management:
s Production games

Game analysis

Consider now a decentralized supply chain characterized by non-cooperative
firms and assume that both players simultaneously decide how many pro-
ducts to produce and supply to the retailer. Using the first-order optimality
conditions for the suppliers” problems we find

cJ(q,.q, G +q,
(fl q,) _ p(q, +q,)—c+q, p(t;: qi):[l
od, ¢q,
cJ(q,.q, cp(q, + ¢
(Ef] q,) _ p(g,+q,)—c+q, Plai+a,)
cd, dq,
Again, since the two problems are symmetric, the competition 1s symmetric.

That 1s, the solution to this system of equations 1s ¢g= ¢;=¢>. which satisfies
the following equation

P29 _, (2.21)
o0 |

p(2q)—c+q




Game theory and Supply chain Management:
s Production games

Proposition 2.4. In horizontal competition of the production game with equal
power plavers, the retail price will be lower and the quantities produced
by the manufacturers higher than the system-wide optimal price and pro-
duction quantity respectivelyv.
Proof: Comparing (2.21) and (2.20) we observe that if g=¢*, then
r(2q) op(2g™)
2q)—c+ >p2g*)—c+2q* =0,
p(2g) - p(2g™) 1"~
while the derivative of the left-hand side of this inequality with respect to ¢
is negative. Thus, g=¢*, which, in regard to the down-sloping price func-
tion p(2¢g). means that p(2q)<p(2g™).
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Stackelberg solution

Next we assume that one of the suppliers 1s the leader. say supplier-one.
To find the Stackelberg equilibrium. we need to maximize supplier-one’s
objective with ;. subject to the best supplier-two’s response ¢:= ¢ (q.).
Let = q- (q;) satisfy the following equation

(g, +4,)
The Stackelberg equilibrium 1s determined by maximizing the following
function

plg,+q,)—-c+q, =0. (2.23)

max Jy(g)= max ¢,[p(q:+ ¢:"(g:)-c].
1 1

Difterentiating this function we find

oJ (g, +q," 6q,"
C ](fl-:l) — p(ql _qzﬁ(ql))_c+ql Cp(gl QIL (ql)) (1+ g: (G])) — 0 i (224)
cq, cQ aq,
0q," (¢,)
where % 1s determined by differentiating (2.23) with ¢, set equal to
g,
q:"(q1)
r:p(O) (s mf(%)) oq," (g,) 3p(Q) | 2 EQ ﬁqf(ql)) 0
o, oq, G0 60’ &g, '
Thus

— 0, @) _ (2O, j(l)ap Q) /| 2O kD (555
cdy . 00 60" )




Game theory and Supply chain Management:
s Production games
* A numerical example

Let the price be linear in production quantity, p=a-50, Q—g]ﬂp p[ﬂ}—a“*c‘

Note that the price requirements, ﬁ P =—-b<0 and pr p
cq, cq, cq, C@':

. =0 are met for the selected function. Usmng Proposition 2.5 we
Cq10G,

solve (2.22),

Cp(q)_

p(2¢")—c+q" —a—-2bg" —c+q"(-b) =0

_ 2
and find that g¢,"= ¢1" = 53; hence, p —%a+§c‘_ The pavotts for the

equilibrium are thus identical for both plavers, Ji(g)".g2")=D(q1".q2") =
(a—c)’
9b
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s Production games
s A numerical example

Based on (2.23) we can 1denfify the best response function of the second

supplier
plgy+g,)—c+q, Ep(f;; 22 _ a—blg, +q,)—c+q,(=b)=0,
and thus ‘
9. =4, (g) =$.

This response 1s then employed in (2.24) and (2.25) to find the Stackelberg
equilibriinm. Equivalently. by substituting this response into the first sup-
plier objective function

b
max q[plg:+ ¢:(qn)-cl=max g[S -2 -2,

and using the first-order optimality conditions, we obtain an explicit reso-
Iution of equation (2.24) for our example,

cJ a c b
ﬁ—L=[:—%—; ~q[-<]1=0.
cq, 2 2 2 2
: . a-—c . a—¢ . da+3c . . (a—¢c)
Accordingly, ;"= L gy = L p= g gy )= and
) 2b 4h
Jagr.g2)= % . Note that instead of equal payoff under a simultane-

ous Nash strategy, the first supplier. who 1s the leader. gains a profit which
15 twice as much as the follower’s profit under a sequential Stackelberg
strategy.
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s Production games
* A numerical example

Finally, the centralized solution (2.20) 15

P
p(Eg*}—£+Eg*%zﬂ—lb@*—s—iq*(—b}:ID_

Or. g1 = q: =4-c , hence. p*=%a +%E and the system-wide optimal
) i : t (ﬂ' - E]E
supply chain profit is Jig; .q> )= T
;_a-¢c_ o, 4a-c_ s a-c
] = S = 1 = i
DT T T T T T
5 Iz 3':'5' _ E)]
gl g ) qr g )= <l g Vg g )=
Na—e) (a—c)
Jg1' g2 )=

9b 4b
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il
L

3

S

3

STOCKING COMPETITION WITH RANDOM DEMAND

In contrast to the previous section, we now assume that the retailer demand
Is random and proceed to adapt two classic newsvendor models into two

stocking/pricing games.

In one game the supplier sets the wholesale price to sell some of his stock
while the retailer decides on the quantity to purchase in order to replenish
his stock.

We refer to this game as the stocking game.

Supplier: w |
Retailer: ¢ I

the stocking game
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STOCKING COMPETITION WITH RANDOM DEMAND

The other game is related to a manufacturer who pays a setup cost for each
production order.

To avoid this irreversible cost, the manufacturer has the alternative of
outsourcing current in-house production to a supplier.

Similar to the stocking game, the supplier decides on the wholesale price
and does not charge a fixed order cost. Unlike the stocking game, the
manufacturer determines first whether to outsource the production at this
wholesale price or to produce in-house and then determining the proper
quantity to order.

Manufactuerer

We refer to this game as the outsourcing game.

In-house

production Outsourcing

Supplier 1: C,cy, Supplier 2: w
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% STOCKING COMPETITION WITH
RANDOM DEMAND

% The stocking game.

#* The classical, single-period, newsboy or Supplier: w
newsvendor problem formulation assumes
random exogenous demand, d. l I q
# If the retailer orders less than the demand at

the end of period, then shortage h- cost per Retailer: ¢
unit of unsatisfied demand is incurred.

#* If the retailer orders more than he is able to
sell, unit inventory cost h* (mitigated by
salvage cost) is incurred for units left over at
the end of period.

The retailer goal is to find order quantity, g, to maximize expected
overall profits.

The supplier goal is to choose a wholesale price, w, to maximize
expected overall profits.
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Supplier: w

#% The stocking game.

The retailer’s problem

Retailer: ¢

max J,(¢g.w)= max {E[ym - h'x" - h'x']-wg},
q q

5
x=q-d,
q=0,

where x™=max {0, x} and x =max{0, -x} are inventory surplus and shortage
at the end of selling season respectively, and y=min{g,d} 1s the number of
products sold.

max J,(¢,w)=max {
q q

J. mDAD)dD+ ];m qﬂD)a’D—jh’ (g-D)f (D)dD—].h' (D-q)f(D)dD-wqs},
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Supplier: w

% The stocking game.

The supplier’s problem

Retailer: ¢

max Jy(g,w)= (w-c)q
w
S.t.
c<w<w¥

s The corresponding centralized problem is based on the sum of two
objective functions of retailer and suppliers., which results in a
function independent of wholesale price, w, representing a transfer
within the SC.

The centralized problem
max J(¢)= max {E[ym - h'x"- I'x']- cq}
q q

S.L.
x=q¢-d, ¢=0.
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Supplier: w

% The stocking game.

We first study the centralized problem. Similar
to retailer objective function, by determining

the expectation of , we obtain

max J(g)= max {
g g

| mDAD)ID~+ [ maf(D)AD~ [ 1™ (q—D) f (D)AD~ [ I~ (D—g) f(D)AD~cq?}-

By employing the first-order optimality condition to this function, we
have

cJ(q)
E{}'

= mqf(q) — mqf(q)+jmf(ﬂ)dﬂ ij f(D)dD+jh £(D)dD —c=0.

which, after simple manipulations, results in

m(l-F(g)—h" F(@)+h (1-F(g))—¢c=0




Game theory and Supply chain Management:

Supplier: w

% The stocking game.

F(q *): E h e Retailer: ¢

m+h +h

We can also verify the sufficient condition, i.e., that the system wide
objective function is concave, i.e.

6*J(q)

= =—(m+h"+h")f(q) <0.
0q-

Let AD)>0 for d™ <D <d™ . Then, since ordering less than the
minimum demand, 7™ as well as more than the maximum demand, @™,
does not make any sense, the centralized objective function 1is strictly con-
cave and thus we find a unique solution.




Game theory and Supply chain Management:

Supplier: w

% The stocking game.

Game analysis

The supplier chooses the wholesale price w and the
retailer selects the order quantity, g. The supplier then
produces ¢ units at unit cost ¢ and delivers them to the

Retailer: ¢

retailer.
Using the first-order optimality conditions for the retailer’s problem, we
have
8J(g, W) - - c _
SR~ mgflq) - maflq)+ jmf(D)dD— jh f(D)dD+ jh F(D)dD—w=0
" q 0 q

Thus, we find that the maximum wholesale price, w"=m+/", so that if
M 3 2 : :
w<w" | the best retailer’s response 1s determined by

m+h —w

F(q)=

m+h +h




Game theory and Supply chain Management:

Supplier: w

% The stocking game.

*

y

Game analysis

Retailer: ¢

System wide optimal  Game theory (not cooperative)

m+h —c , -
! . Fla)— m+/7_ u’
m+h +h m+h +h

F(qg*)=

\Qmmmmm 2.6. In verti

That is to say non-cooperative decision making of retailer and supplier decreases
order quantity, deteriorates service level, and profits of them.

Therefore some kind of mechanisms (coordination mechanisms)should be
applied to reduce this undesirable effect which called double margination.

S




Supplier: w

Game theory and Supply chain Management:

% The stocking game.

Retailer: ¢

Stackelberg equilibrium

Assume that the supplier 1s a leader in the Stackelberg game. The sup-
plier’s objective function with g subject to the optimal retailer’s response
g=q¢"(w) is determined by
Ji(g.w)= (w-c) qR(w).

Differentiating the supplier’s objective function, we have

ot (g, w oq" (v

%gw) ) =g (w)+(w—-c) 1ﬁ(w) =0.
ow cw

A ® (w
The value of C‘?T(W) can be calculated from differentiating optimal order
cow

quantity in previous nash equilibrium, which result in value.

1
m+h +h

fighoy S —
ow




Game theory and Supply chain Management: Stgpllcca

% The stocking game. q

Stackelberg equilibrium Reiiler: 4

Proposition 2.7. Let f(D)>0 for D> 0, otherwise f(D)=0 . The pair (W,q’),

where W’ and ¢°= ¢~ (W’) satisfy

m+h —w

R : W —c Re =
q \w)— =0.Flg W)=
PO gy )
constitutes a Stackelberg equilibrium of the stocking game with c<w’<
m+h =nw'’

m+h +h

(m+h+h)f(q*(w)

g)

where
m+h —w

Flg" W)= —————
m+h-+h




Game theory and Supply chain Management: Supplier:

% The stocking game.

Coordination Refuiler: ¢

# As we see earlier, not cooperative strategies (vertical competition)

deteriorate SC performance and profits of supplier and retailer.

# Due to the same double marginalization effect, the coordination in this
game is similar to that discussed for the pricing game: discounting and
profit sharing.

* We show general discounting mechanism




Game theory and Supply chain Management: Supplier:

Coordination Retailer:

|
|

|

: # The stocking game. )
|

|

|

: % general discounting mechanism

1SS

Proposition 2.8. Let w(qg*)<w", and the discounting scheme be such that
omq) . ;0 o wlg)
aq dq’

=0 for g<q*

if w(q) is a continuous function of q,

ow(q)
0q

and

> c for q=q*, then the supplier orders the system-wide optimal

quantity q*.

i e W(q) >0, if g<¢™* and aidct

= > ¢ 1T g>g™.
0q oq” oq

1
il



Game theory and Supply chain Management:

% The outsourcing game.

# In this section, the classical, single-period Manufactuerer

In-house
production

newsvendor model with a setup cost is

Outsourcing

turned into an outsourcing game.

Supplier 1: C,cp, Supplier 2: w

* We consider a single manufacturer with

two potential situations. He either incurs a

fixed cost per each production order or the

Market

product produced is characterized by
frequently changing characteristics and/or

technology.

* These changes may be due to new product features and/or technological

developments so that each change induces a non-negligible fixed cost.




Game theory and Supply chain Management:

Manufactuerer

#* The outsourcing game. In-house |
production Outsourcing
Supplier 1: C,cp Supplier 2: w

# the manufacturer has two options.
Market

# One is to order the production in-house, which incurs an irreversible fixed

cost C as well as variable cost ¢, per unit product.

# The other option involves outsourcing the production to a single supplier.
Then the manufacturer incurs only the variable purchasing cost w per

product unit and the supplier incurs a unit production cost c.

* We assume that c>c_,, no initial inventory, and a profitable in-house

production.




Manufactuerer

Game theory and Supply chain Management:

In-house

production Outsourcing

% The outsourcing game.

Supplier 1: C,cy, Supplier 2: w

The manufacturer’s problem
max J,,(qg.w)=
q
max { max {E[ym -h"x"- h'x]-wq}, max {E[ym -h"x"- h'x']-¢,,g-C} },
q q

S.1.
x=q-d,

q=0,

where x =max {0, x} and x” =max {0, -x} are respectively inventory surplus
and shortage at the end of a period, and y=min{¢,d} is the number of
products sold.

The manufacturer’s objective function have two parts, the first one represents
profit from outsourcing and the second in-house production profit.




Game theory and Supply chain Management:

% The outsourcing game.

it
FalaY

i
K,

Manufactuerer

In-house

production Outsourcing

Supplier 1: C,cy, Supplier 2: w

From optimal value of simple newsvendor, it is obvious that the optimal
manufacturer's outsourcing order g’ (for the first part of objective function)
IS

m+h —w

m+h +h™

Flq'y=

Similarly, it is obvious that the optimal manufacturer's in-house order g~ (for
the second part of objective function) is

m+h- —c_

m+h +h

Flg")




Game theory and Supply chain Management:

% The outsourcing game.

Introduce a cost function, n(g), such that

(q)=E[ym-h'x - hx].
Then.
n(q')-wq'=

In1Df(D)(/D + ];mq'f(D)dD - j/f (¢'—D)f(D)dD— T‘.h" (D—q")f(D)dDwq'

# 1S the maximum profit if outsourcing is selected. Moreover, the maximum

profit when in-house production is selected is:

7t((]")'cmq o O

| mDJ(D)dD+Imq' F(D)D- (1" (q"-D) f(D)a’D—Ih’ (D—q")f(D)dD-crq"-C.




Game theory and Supply chain Management:

% The outsourcing game.

Thus, the optimal manufacturer's choice for a given wholesale price 1s
summarized by

[q' Af 7(q') —wqg'2n(qg") —c,,q"-C
q = 1 " a
q"', otherwise,

where ¢' 1s the outsourcing order, while ¢" i1s the in-house production

m+h —w m+h —c
— F(q")= —
m+h- +h m+h +h

F(q'y=




Game theory and Supply chain Management:

% The outsourcing game.

w’ 1s the smallest root of the explesswn below

j mDAD)dD+ j mq''f(D)dD— j 1 (¢ -D)f(D)dD- j W (D—q") f(D)dD-c,,q"-C=

j mDf(D)dD + j mq'f (D)dD — j h*(q' - D) f(D)dD - j W (D—-q')f(D)dD -

w’q’,
m+h —c +h —w°
where F(q")= _—m and Fg)= 2= sl
m+h +h m+h” +h
Jq'.ichwS w.
qz\l "o 0
q".if w <ec,
+h - = 0
where F(q”)— i u Cm and F(q)— m+h W

m+h +h m+h +h”




Game theory and Supply chain Management:
% The outsourcing game.
The supplier’s problem

max Jy(q,w)= (w-c)gq

S.t.
0
cww.

Note that if 7(¢")-c,,¢"-C<7n(q')-cq', then the supplier’s problem has a
feasible solution. Otherwise, ¢, <w°<c, and the supplier’s problem has no

feasible solution since, in order to compete with in-house production, the
supplier has to set the wholesale price below his marginal cost, w<ec.




