

Lecture #5

Multiagent systems

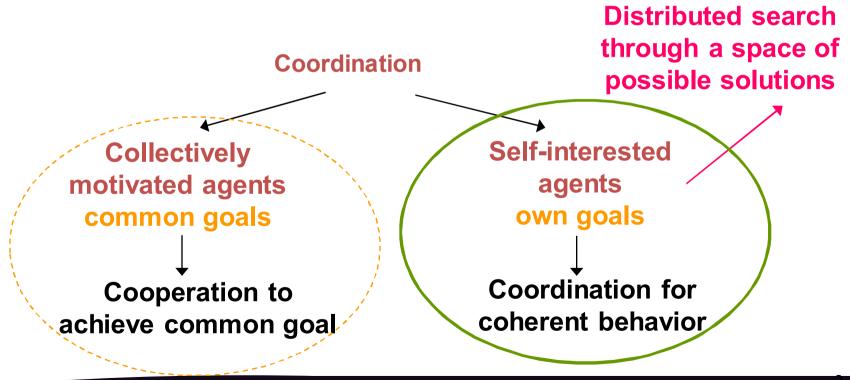
Negotiation techniques in multiagent systems

Lecture outline

- Negotiation principles
- Game theoretic negotiation
 - Evaluation criteria
 - Voting
 - Auctions
- General equilibrium markets
- Task allocation
- Heuristic based negotiation
- Argumentation based negotiation

Negotiation principles

- Negotiation = interaction among agents based on communication for the purpose of coming to an agreement.
- Distributed conflict resolution
- Decision making
- Proposal \rightarrow accepted, refined, criticized, or refuted



- Negotiation includes:
 - a communication language
 - a negotiation protocol
 - a decision process by which an agent decides upon its position, concessions, criteria for agreement, etc.
- Single party or multi-party negotiation: one to many or many to many (eBay <u>http://www.ebay.com</u>)
- May include a single shot message by each party
- Negotiation techniques
 - Game theoretic negotiation
 - Heuristic-based negotiation
 - Argument-based negotiation

Game theoretic negotiation

• Utility function

$$-\mathbf{u}_{i}: \Omega \rightarrow \mathbf{R}$$

- $\Omega = \{s1, s2, \ldots\}$
- $\mathbf{u}_{i}(s) \ge \mathbf{u}_{i}(s') (s \ge s')$

Suppose each agent has two possible actions: D and C:

□ The environment behaves:

t: Ac x Ac → R t(D,D)=r1 t(D,C)=r2 t(C,D)=r3 t(C,C)=r4or t(D,D)=r1 t(D,C)=r1 t(C,D)=r1 t(C,C)=r1 u1(r1)=1, u1(r2)=1, u1(r3)=4, u1(r4)=4 u2(r1)=1, u2(r2)=4, u2(r3)=1, u2(r4)=4 u1(D,D)=1, u1(D,C)=1, u1(C,D)=4, u1(C,C)=4 u2(D,D)=1, u2(D,C)=4, u2(C,D)=1, u2(C,C)=4Agent1 C,C ≥ C,D ≥ D,C ≥ D,D

u1(D,D)=4, u1(D,C)=4, u1(C,D)=1, u1(C,C)=1 u2(D,D)=4, u2(D,C)=1, u2(C,D)=4, u2(C,C)=1 Agent2 D,D ≥ D,C ≥ C,D ≥ C,C

Payoff matrix

		Agent1	Player
		D	С
Agent2	D	4, 4	4, 1
Player	С	1, 4	1, 1

7

Evaluation criteria

- Criteria to evaluate negotiation protocols among self-interested agents
- Agents are supposed to behave rationally
- Rational behavior = an agent prefers a greater utility (payoff) over a smaller one
- Payoff maximization over
 - individual payoffs
 - group payoffs
 - social welfare
- Social welfare
 - The sum of agents' utilities (payoffs) in a given solution.
 - Measures the global satisfaction of the agents
 - Problem: how to compare utilities

Pareto efficiency

- A solution x, i.e., a payoff vector p(x₁, ..., x_n), is Pareto efficient, i.e., Pareto optimal, if there is no other solution x' such that at least one agent is better off in x' than in x and no agent is worst off in x' than in x.
- Measures global satisfaction, does not require utility comparison
- □ Social welfare ⊂ Pareto efficiency
- Individual rationality (IR)

IR of an agent participation = The agent's payoff in the negotiated solution is no less than the payoff that the agent would get by not participating in the negotiation

□ A mechanism is IR if the participation is IR for all agents

Stability

- a protocol is stable if once the agents arrived at a solution they do not deviate from it
- **Dominant strategy** = the agent is best off using a specific strategy no matter what strategies the other agents use

Or:

We say that a strategy $S_1 = \{s_{11}, s_{12}, ..., s_{1n}\}$ *dominates* another strategy $S_2 = \{s_{21}, s_{22}, ..., s_{2m}\}$ if any result of $s \in S_1$ is preferred (best than) to any result of $s' \in S_2$.

Nash equilibrium

Two strategies, S₁ of agent A and S₂ of agent B are in a Nash equilibrium if:

- in case agent A follows S₁ agent B can not do better than using S₂ and
- in case agent B follows S₂ agent A can not do better than using S₁.
- □ The definition can be generalized for several agents using strategies S_1 , S_2 , ..., S_k . The set of strategies $\{S_1, S_2, ..., S_k\}$ used by the agents $A_1, A_2, ..., A_k$ is in a Nash equilibrium if, for any agent A_i , the strategy S_i is the best strategy to be followed by A_i if the other agents are using strategies $\{S_1, S_2, ..., S_{i+1}, ..., S_k\}$.

Problems:

- no Nash equilibrum
- multiple Nash equilibria

Multiagent systems

Prisoner's dilema

- □ Social welfare, Pareto efficient ?
- □ Nash equilibrium ?

	Axeiroa's tournament			
		Column	player	
		Cooperate	Defect	
Row	Cooperate	3, 3	0, 5	
player	Defect	5, 0	1, 1	

Avalrad's tours an ant

Computational efficiency

Cooperate = not confessing Defect = confessing

- To achieve perfect rationality
- □ The number of options to consider is too big
- Sometimes no algorithm finds the optimal solution

Bounded rationality

- □ limits the time/computation for options consideration
- □ prunes the search space

Game of Chicken

		J2	player
		D	С
J1	D	0, 0	3, 1
player	С	1, 3	2, 2

Battle of sexes

		Bob player	
		Theater	Football
Anne	Theatre	2, 1	0, 0
player	football	0, 0	1, 2

Coin flip

		J2	jucator
		Cap	Pajura
J1	Сар	+1, -1	-1, +1
jucator	Pajura	-1, +1	+1, -1

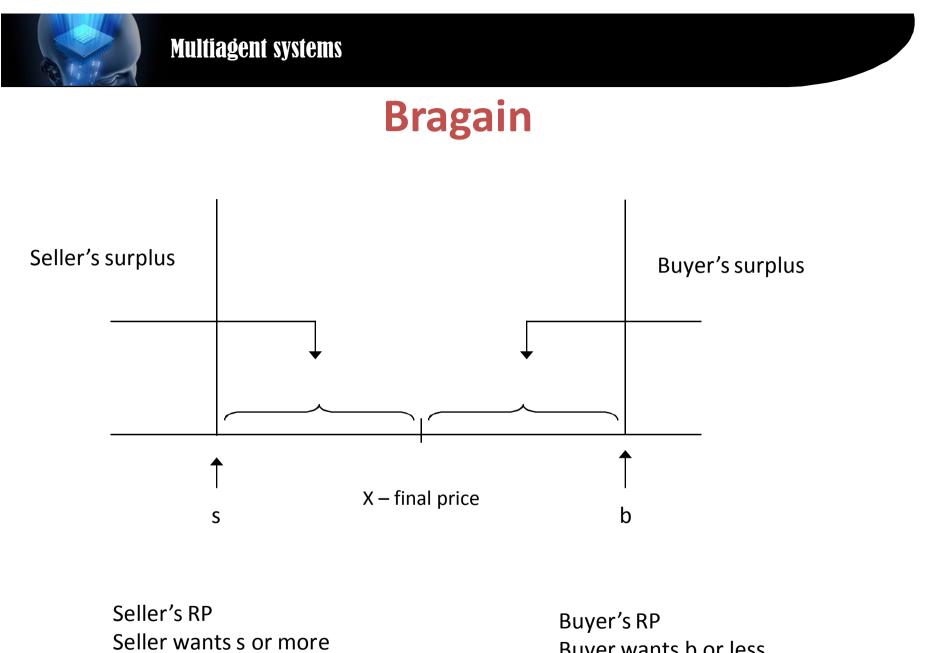
- We have discussed about <u>pure strategies</u>
- A **mixed strategy** is an assignment of a probability to each pure strategy
- A mixed strategy p_i of a player i is a probability distribution over actions A_i available to I
- A **pure Nash equilibrium** is a Nash equilibrium using pure strategies
- A mixed Nash equilibrium is a Nash equilibrium using mixed strategies
- A mixed Nash equilibrium is a set of mixed strategies, one for each player, so that no player has an incentive to unilaterally deviate from their assigned strategies

		J2	player
		L	R
J1	Τ	2, 1	0,0
player	B	0, 0	1, 2

		J2	J2 player	
		L	R	
J1	Τ	p * q	p * (1-q)	
player	B	(1-p) * q	(1-p) * (1-q)	

Bargain

- In a transaction when the seller and the buyer value a product differently, a surplus is created. A bargaining solution is then a way in which buyers and sellers agree to divide the surplus.
- □ A house 10, B house 20
- □ Trade would result in the generation of surplus, whereas no surplus is created in case of no-trade.
- Bargaining Solution provides an acceptable way to divide the surplus among the two parties.



Buyer wants b or less

Multiagent systems

- A Bargaining Solution is defined:
- $F: (X,d) \rightarrow S$,
 - $\ X \subseteq R^2 \text{ and } S, d \ \subseteq \ R^2 \, .$
 - X represents the utilities of the players in the set of possible bargaining agreements.
 - d represents the **point of disagreement**.
- price \in [10,20], bargaining set is simply x + y \leq 10, x \geq , y \geq 0.
- A point (x,y) in the bargaining set represents the case, when seller gets a surplus of x, and buyer gets a surplus of y, i.e. seller sells the house at 10 + x and the buyer pays 20 - y.

The Ultimatum Game

- P1 proposes how to divide the sum x between the two players: p and p-x
- P2 can either accept or reject this proposal (f(p) = accept or reject)
- If P2 *accepts*, the money is split according to the proposal.

-P1 gets p and P2 gets p-x

• If **P2** rejects, neither player receives anything.

The Ultimatum Game

- (*p*, *f*) is a Nash equilibrium of the Ultimatum Game if
- f(p) = "accept" and there is no y > p such that f(y)
 = "accept" (i.e. player 2 would reject all proposals in which player 1 receives more than p).
- The first player would not want to unilaterally increase his demand since the second will reject any higher demand.
- The second would not want to reject the demand, since he would then get nothing.

Voting

Truthful voters

- Rank feasible social outcomes based on agents' individual ranking of those outcomes
- □ A set of *n* agents
- O set of *m* feasible outcomes
- Each agent has a preference relation <_i : O x O, asymmetric and transitive

Social choice rule

- \Box *Input:* the agents' preference relations (<₁, ..., <_n)
- Output: elements of O sorted according the input gives the social preference relation <*</p>

Properties of the social choice rule:

- A social preference ordering <* should exist for all possible inputs (individual preferences)
- \Box <* should be defined for every pair (o, o') \in O
- <* should be asymmetric and transitive over O</p>
- □ The outcomes should be Pareto efficient:

if $\forall i \in A$, $o <_i o'$ then $o <^* o'$

No agent should be a dictator in the sense that

o <_i o' implies o <* o' for all preferences of the other agents

Arrow's impossibility theorem

No social choice rule satisfies all of the six conditions

Binary protocol

Pluralist protocols

Binary protocols

- 35% agents c>d>b>a
- 33% agents a>c>d>b
- 32% agents b>a>c>d
- Agenda 1: (b,d), d, (d,a) a, (c,a) a
- Agenda 2: (c,a) a, (d,a) a, (a,b) b
- □ Agenda 3: (a,b) b, (b,c) c (c,d) c
- □ Agenda 4: (c,a) a (a,b) b, (b,d) d

Pluralist protocols

- **Borda protocol** = assigns an alternative |O| points for the highest preference, |O|-1 points for the second, and so on
- The counts are summed across the voters and the alternative with the highest count becomes the social choice

Borda Protocol

Agent	Preference	Agent	Preference
1	a>b>c>d	1	a>b>c
2	b>c>d>a	2	b>c>a
3	c>d>a>b	3	c>a>b
4	a>b>c>d	4	a>b>c
5	b>c>d>a	5	b>c>a
6	c>d>a>b	6	c>a>b
7	a>b>c>d	7	a>b>c

c gets 20, b 19, a 18, d 13
elim d – a 15, b 14, c 13

Winner turns loser and loser turns winner if the lowest ranked alternative is removed

Auctions

(a) Auction theory = agents' protocols and strategies in auctions

- The auctioneer wants to sell an item at the highest possible payment and the bidders want to acquire the item at the lowest possible price
- A centralized protocol, includes one auctioneer and multiple bidders
- The auctioneer announces a good for sale. In some cases, the good may be a combination of other goods, or a good with multiple attributes
- The bidders make offers. This may be repeated for several times, depending on the auction type
- The auctioneer determines the winner

- Auction characteristics:
 - Simple protocols
 - Centralized
 - Allows collusion "behind the scenes"
 - May favor the auctioneer

(b) Auction settings

- Private value auctions: the value of a good to a bidder agent depends only on its private preferences. Assumed to be known exactly
- Common value auctions: the good's value depends entirely on other agents' valuation
- Correlated value auctions: the good's value depends on internal and external valuations

(c) Auction protocols

English (first-price open cry) auction - each bidder announces openly its bid; when no bidder is willing to raise anymore, the auction ends. The highest bidder wins the item at the price of its bid.

Strategy:

- In private value auctions the dominant strategy is to always bid a small amount more than the current highest bid and stop when the private value is reached.
- In correlated value auctions the bidder increases the price at a constant rate or at a rate it thinks appropriate
- **First-price sealed-bid auction** each bidder submits one bid without knowing the other's bids. The highest bidder wins the item and pays the amount of his bid.

Strategy:

- No dominant strategy
- Bid less than its true valuation but it is dependent on other agents bids which are not known

Multiagent systems

Dutch (descending) auction - the auctioneer continuously lowers the price until one of the bidders takes the item at the current price.

Strategy:

- Strategically equivalent to the first-price sealed-bid auction
- Efficient for real time

Vickery (second-price sealed-bid) auction - each bidder submits one bid without knowing the other's bids. The highest bid wins but at the price of the second highest bid

Strategy:

• The bidder dominant strategy is to bid its true valuation

All-pay auctions - each participating bidder has to pay the amount of his bid (or some other amount) to the auctioneer

(d) Problems with auction protocols

- They are not collusion proof
- Lying auctioneer
 - Problem in the Vickery auction
 - Problem in the English auction use shills that bid in the auction to increase bidders' valuation of the item
 - The auctioneer bids the highest second price to obtain its reservation price – may lead to the auctioneer keeping the item
 - Common value auctions suffers from the winner's curse: agents should bid less than their valuation prices (as winning the auction means its valuation was too high)
 - Interrelated auctions the bidder may lie about the value of an item to get a combination of items at its valuation price

- General equilibrium theory = a microeconomic theory
- *n* commodity goods *g*, *g* = 1,*n*, amount unrestricted
- prices $\mathbf{p}=[\mathbf{p}_1, ..., \mathbf{p}_n]$, where $\mathbf{p}_g \in \mathbf{R}$ is the price of good g
- 2 types of agents: **consumers** and **producers**

• 2 types of agents: consumers and producers

Consumers:

- An utility function u_i(x_i) which encodes its preferences over different consumption bundles x_i=[x_{i1},...,x_{in}], where x_{ig} ∈ R⁺ is the consumer's *i*'s allocation of good g.
- An initial endowment e_i=[e_{i1},...,e_{in}], where e_{ig} is its endowment of commodity g

Producers:

- Production vector y_j=[y_{j1},...,y_{jn}] where y_{jg} is the amount of good g that producer j produces
- Production possibility set **Y**_i the set of feasible production vectors

- The **profit** of producer *j* is **p** . y_j , where $y_j \in Y_j$.
- The producer's profits are divided among the consumers according to predetermined proportions which need not be equal.
- Let θ_{ij} be the fraction of producer *j* that consumer *i* owns
- The producers' profits are divided among consumers according to these shares
- Prices may change and the agents may change their consumption and production plans but

 actual production and consumption only occur when the market has reached a general equilibrium

(**p***, **x***, **y***) is a Walrasian equilibrium if:

• markets
$$\sum_{i=1}^{n} x_{i}^{*} = \sum_{i=1}^{n} e_{i}^{*} + \sum_{j=1}^{n} y_{j}^{*}$$

• each consumer *i* maximizes its preferences given the prices

$$x^{*}_{i} = \arg \max_{x_{i} \in R_{n}^{+}, p^{*}.x_{i} \leq p^{*}.e_{i} + \sum_{j} \theta_{ij} p^{*}.y_{j}} u_{i}(x_{i})$$

• each producer *j* maximizes its profits given the prices

$$y^*_{j} = \arg \max_{y_j \in Y_j} p^* \cdot y_j$$

35

Properties of Walrasian equilibrium:

- Pareto efficiency the general equilibrium is Pareto efficient, i.e., no agent can be made better off without making some other agent worse off
- Coalitional stability each general equilibrium is stable in the sense that no subgroup of consumers can increase their utilities by pulling out the equilibrium and forming their own market
- Uniqueness under gross substitutes a general equilibrium is unique if the society-wide demand for each good is nondecreasing

The distributed price tatonnement algorithm

Algorit

- 1. $p_g = 1$ for all $g \in [1..n]$
- 2. Set λ_g to a positive number for all $g \in [1..n]$

3. repeat

- 3.1 Broadcast **p** to consumers and producers
- 3.2 Receive a production plan y_i from each producer j
- 3.3 Broadcast the plans y_j to consumers
- 3.4 Receive a consumption plan **x**_i from each consumer *i*
- 3.5 **for** g=1 to n **do**

$$p_{g} = p_{g} + \lambda_{g} (\Sigma_{i}(x_{ig} - e_{ig}) - \Sigma_{j}y_{jg})$$

until $|\Sigma_i(x_{ig}-e_{ig})-\Sigma_jy_{jg}| < \varepsilon$ for all $g \in [1...n]$

4. Inform consumers and producers that an equilibrium has been reached

The distributed price tatonnement algorithm

Algorithm String and the mage company the property the pr

1. repeat

1.1 Receive **p** from the adjustor

1.2 Receive a production plan \mathbf{y}_{j} for each *j* from the adjustor

1.3 Announce to the adjustor a consumtion plan $\mathbf{x_i} \in \mathbb{R}^{n_+}$ that maximizes $u_i(x_i)$ given the budget constraint

 $\textbf{p.x}_{\textbf{i}} \leq \textbf{p.e}_{\textbf{i}} + \boldsymbol{\Sigma}_{\textbf{j}} \boldsymbol{\theta}_{\textbf{ij}} \textbf{p.y}_{\textbf{j}}$

until informed that an equilibrium has been reached

2. Exchange and consume

Algorithm for producer *j*:

1. repeat

1.1 Receive p from the adjustor

1.2 Announce to the adjustor a production plan $\mathbf{y}_j \in Y_j$ that maximizes $\mathbf{p} \cdot \mathbf{y}_j$

maximizes **p.y**j

until informed that an equilibrium has been reached

2. Exchange and produce



4. Task allocation through negotiation

General equilibrium market mechanisms use global prices a centralized mediator Drawbacks: Inot all prices are global bottleneck of the mediator mediator - point of failure agents have no direct control over the agents to

which they send information

Need of a more distributed solution

4.1 Task allocation by redistribution

This image cannot currently be displayed

- A task-oriented domain is a triple <T, Ag, c> where
 - T is a set of tasks;
 - Ag = {1, ...,n} is a set of agents which participate in the negotiation;
 - c: P(T) → R⁺ is a cost function which defines the costs for executing every sub-set of tasks
- The cost function must satisfy two constraints:
 - must be monotone
 - the cost of a task must not be 0, i.e., $c(\Phi) = 0$.
- An encounter within a task-oriented domain
 <T, Ag, c> occurs when the agents Ag are assigned tasks to perform from the set T
- It is an assignment of tasks $R = \{E_1, \ldots, E_n\}, E_i \subseteq T$,
 - $i\in Ag\text{, to agents }Ag$

Encounter: can an agent be better off by a task redistribution?
 Deal

Example: Ag = { a_1 , a_2 , a_3 }) T = { t_1 , t_2 , t_3 , t_4 , t_5 } Encounter R = { E_1 , E_2 , E_3 } with E_1 = { t_1 , t_3 }, E_2 = { t_2 }, E_3 = { t_4 , t_5 } Deal α = { D_1 , D_2 , D_3 } with D_1 = { t_1 , t_2 }, E_2 = { t_3 , t_4 }, E_3 = { t_5 }

- The cost of a deal α for agent a₁ is c(D₁) and the cost for a₂ is c(D₂).
- The utility of a deal represents how much the agents should gain from that deal

 $utility_i(\alpha) = c_i(E_i) - c_i(D_i)$, for i = 1, 2, 3

- A deal α_{1} is said to dominate another deal α_{2} if and only if:
 - \blacktriangleright Deximismatileast as good for every agents as α_2

 $\forall i \in \{1,2\} \text{ utility}_i(\alpha_1) \geq \text{ utility}_i(\alpha_2)$

- \succ Deal $\alpha_{\rm 1}$ is better for some agent than $\alpha_{\rm 2}$
 - $\exists i \in \{1,2\} \text{ utility}_i(\alpha_1) > \text{ utility}_i(\alpha_2)$
- A deal weakly domintaes another deal if (1) is fulfilled
- If a deal is not dominated by any other deal then the deal is Pareto optimal
- Task re-allocation = finding a Pareto optimal deal
- Task allocation improves at each step ~ hill climbing in the space of task allocations where the height-metric of the hill is social welfare
- It is an anytime algorithm
 - Contracting can be terminated at anytime
 - The worth of each agent's solution increases monotonically → social welfare increases monotonically

Monotonic concession protocol

Several negotiation rounds (u)

- 1. u \leftarrow 1, a1 and a2 propose deals from the negotiation set: α_{1} and α_{2}
- 2. if a1 proposes α_1 and a2 proposes α_2 such that:

```
(i) utility<sub>1</sub>(\alpha_2) \geq utility<sub>1</sub>(\alpha_1)
```

or

```
(ii) utility<sub>2</sub>(\alpha_1) \geq utility<sub>2</sub>(\alpha_2)
```

then agreement is reached stop

- 3. **else** u ← u+1
- 4. if a1 proposes α_1 and a2 proposes α_2 such that:

 $\begin{array}{l} \text{utility}_1(\boldsymbol{\alpha_2}^u\,) \geq \text{utility}_1(\,\boldsymbol{\alpha_2}^{u-1}\,) \quad \text{and} \\ \text{utility}_2(\boldsymbol{\alpha_1}^u\,) \geq \text{utility}_1(\,\boldsymbol{\alpha_1}^{u-1}\,) \end{array}$

then go to 2

5. else negotiation ends in conflict stop

- IR contract
- Problem: task allocation stuck in a local optimum = no contract is individually rational (IR) and the task allocation is not globally optimal
- Possible solution: different contract types:
 - O one task
 - C cluster contracts
 - S swap contracts
 - M multi-agent contracts
- For each 4 contract types (O, C, S, M) there exists task allocations for which there is an IR contract under one type but no IR contracts under the other 3 types
- Under all 4 contract types there are initial task allocations for which no IR sequence of contracts will lead to the optimal solution (social welfare)

Main differences as compared to game theoretic negotiation

- An agent may reject an IR contract
- An agent may accept a non-IR contract
- The order of accepting IR contracts may lead to different pay offs
- Each contract is made by evaluating just a single contract instead of doing lookahead in the future

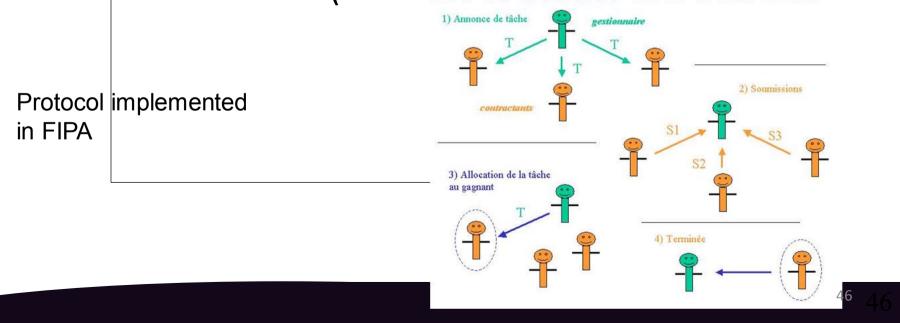
Un-truthful agents

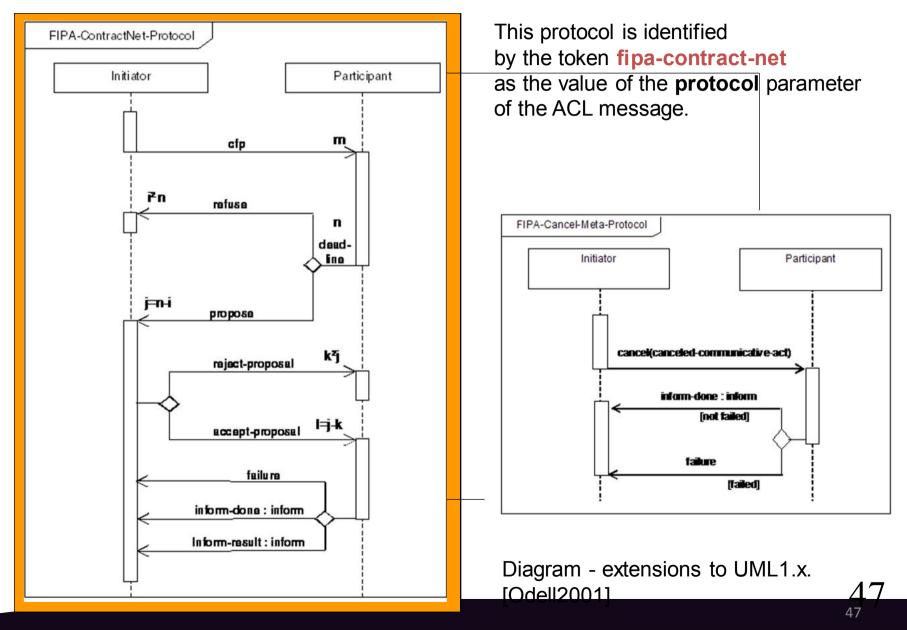
- An agent may lie about what tasks it has:
 - Hide tasks
 - Phantom tasks
 - Decoy tasks
- Sometimes lying may be beneficial

4.2 Contract Net

Task allocation via negotiation - Contract Net

- A kind of bridge between game theoretic negotiation and heuristic-based one
- In a Contract Net protocol, the agents can have two roles: **contractor** (initiator) or **bidder** (participant)





(cfp

Agent *j* asks agent *j* proposals for selling 50 plum boxes and price conditions

- :sender (agent-identifier :name j)
- :receiver (set (agent-identifier :name i))

:content

- "((action (agent-identifier :name i)
 - (sell plumbox 50))
 - (any ?x (and (= (price plumbox) ?x) (< ?x 10))))"
- :ontology fruit-market
- :language fipa-sl
- :protocol fipa-contract-net
- :conversation-id c007
- :**reply-by** 10)

Agent *j* answers to i

(propose

:sender (agent-identifier :name j)

:receiver (set (agent-identifier :name i))

:in-reply-to proposal2

:content

"((action j (sell plumbox 50))

(= (any ?x (and (= (price plumbox) ?x) (< ?x 10))) 5)"

:ontology fruit-market

:language fipa-sl

:protocol fipa-contract-net

:conversation-id c007)

Agent *i* accepts proposal of j

(accept-proposal

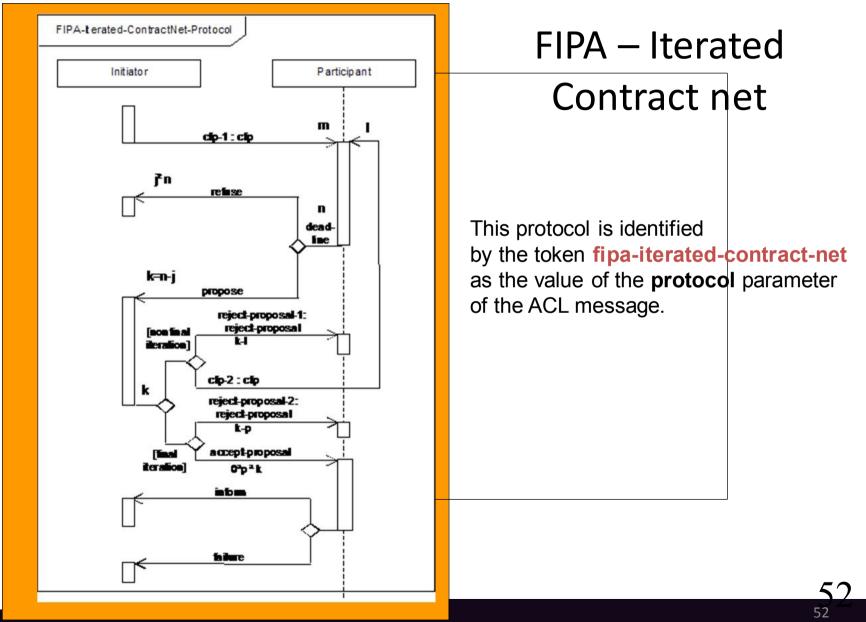
:sender (agent-identifier :name i) :**receiver** (set (agent-identifier :name j)) :in-reply-to bid089 :content ((action (agent-identifier :name j) (sell plumbox 50)) (= (price plumbox) 5))) " :ontology fruit-market :language fipa-sl :protocol fipa-contract-net

:conversation-id c007)

Agent *i* refuses the proposal of k

(reject-proposal

:sender (agent-identifier :name i) :**receiver** (set (agent-identifier :name k)) :in-reply-to bid080 :content "((action (agent-identifier :name k) (sell plumbox 50)) (= (price plumbox) 20) (price-too-high 20))" :ontology fruit-market :language fipa-sl :protocol fipa-contract-net :conversation-id c007

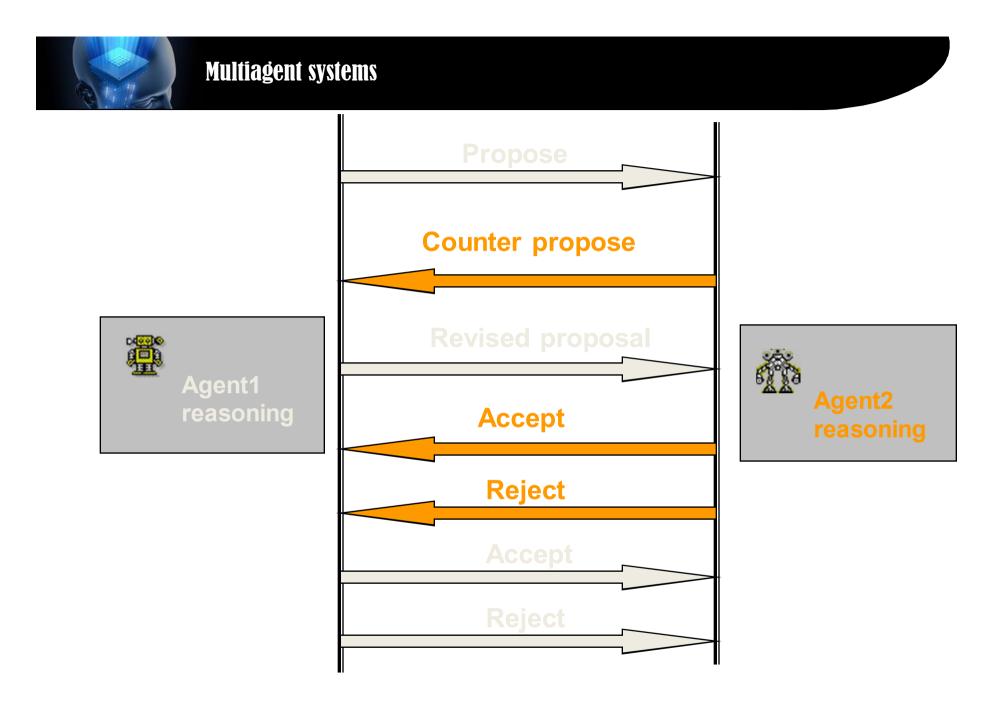


CI	id	0	5	2
9	IU	C	9	~

a3 adina, 11/22/2007

5 Heuristic-based negotiation

- Produce a good rather than optimal solution
- Heuristic-based negotiation:
 - > Computational approximations of game theoretic techniques
 - Informal negotiation models
- No central mediator
- Utterances are private between negotiating agents
- The protocol does not prescribe an optimal course of action
- Central concern: the agent's decision making heuristically during the course of negotiation

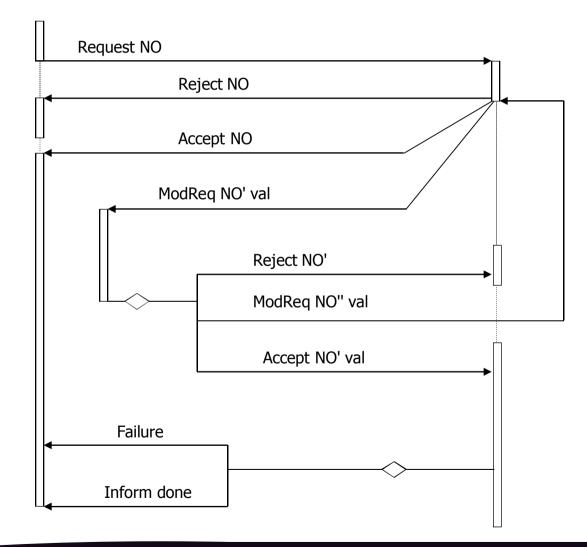


- A *negotiation object* (NO) is the range of issues over which agreements must be reached
- The object of a negotiation may be an action which the negotiator agent *A* asks another agent *B* to perform for it, a service that agent *A* asks to *B*, or, alternately, an offer of a service agent *A* is willing to perform for *B* provided *B* agrees to the conditions of *A*.

NO03: NO

- Name: Paint_House
- Cost: Value:100, Type: integer, Modif=Yes;
- Deadline: Value: May_12, Type: date, Modif=No;
- Quality: Value: high, Type: one of (low, average, high), Modif=Yes
- **(Request NO)** request of a negotiation object
- □ (Accept name(NO)) accept the request for the NO
- □ (Reject name(NO)) reject the request for the NO
- □ (ModReq name(NO) value(NO,X,V1)) modify the request by modifying the value of the attribute X of the NO to a different value V1

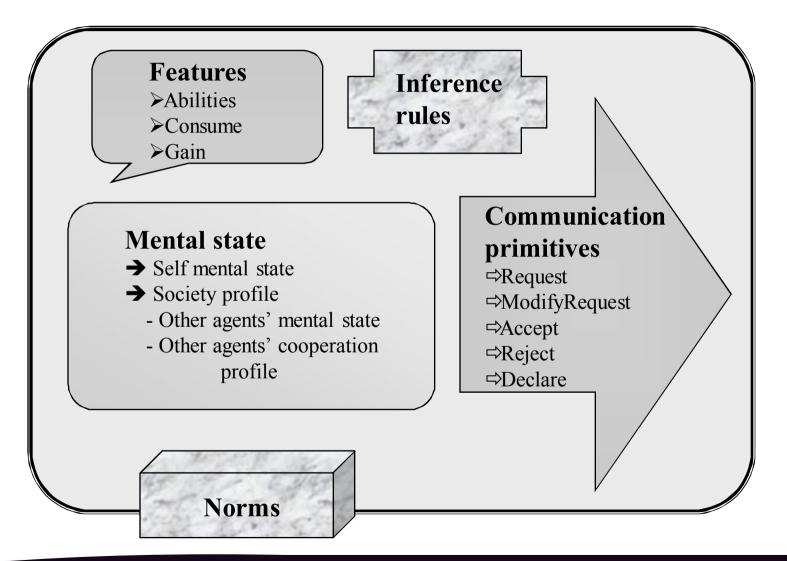
Initiator IP for the defined primitives Participant



Example

- Model of a MAS with self-interested agents aiming to:
- achieve their own goals
- comply to obligations and norms
- obtain maximum gain
- establish good cooperation relationships in the society

Agent Representation



The Mental Model Mental state - self

- Beliefs Bel_iw
- Desires Des_iw BDI model
- Intentions Int_iw
- $Goals_i \subseteq \{Des_iw\}$

Intentions-to (agent) Intensions-that (others)

- Obligations Ob_iw
- Preferences Pref_i(w,v) i prefers w with value v

Agent Features

- Abilities Ab_iw
- Consumes Cons_i(w,v) agent i consumes v for executing the action w
- Gain Gain_i(w,v) agent i gains v for achieving goal w
 Norms
- permitted actions in MAS

Communication Primitives

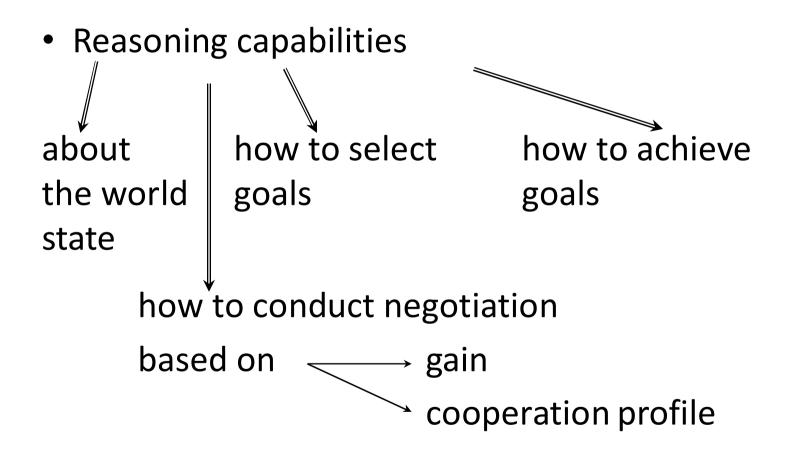
- Request(*w*, DeadLine, Payment)
- ModifyRequest(w, DeadLine, Payment)
- Accept(w, DeadLine, Payment)
- Reject(w, Justification)
- Declare(w)

Messages

- Send: Ag x Ag M
- Receive: Ag x Ag A

M

Agent Reasoning

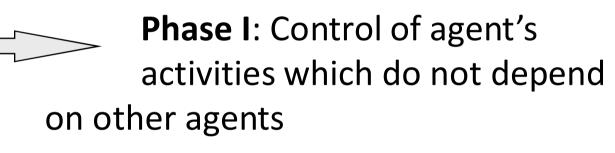


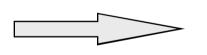
Inference Rules

- Inference Rules for updating the Mental State
- Inference Rules for goal Selection
- Inference Rules for plan generation
- Inference Rules for evaluating the cooperation profile
- Inference Rules for negotiation
 - (a) Request generation & selection
 - (b) Incoming request evaluation & answer generation
 - (c) Answer evaluation & reply generation

Agent Control Structure

• 2 Phases





Phase II: Negotiation and reaching of agreements

Phase I

- Select Goals as a non-contradictory subsets of Desires
- Generate Plans for achieving Goals
- Analyze Plans from the point of view of norm compliance
- <u>if</u> actions in Plans violate Norms <u>then</u> revise Plans or revise Goals
- <u>if</u> there are intentions-that
- <u>then</u> search descriptions of other agents <u>and</u> identify the agents {i} with Ab_{i} able to do *intentions-that*
 - if no such agents exist
 - <u>then</u> address Facilitator or revise Plans or revise Goals
- Perform all *intentions-to*

Phase II

- Generate requests for agents in {i} to do *intentions-that*
- Select requests {Req_{i}} to be sent
- Send requests {Req_{i}}
- Read answers to {Req_{i}}
- Evaluate answers, accept them or generate counterproposals
- Evaluate incoming requests {Req_A} and generate answers
- Update mental model
- Send answers to {Req_A} (accept or counterproposals)

Cooperation profile of agent x as seen by A

- No. of A's requests accepted by x (No_req)
- No. of A's requests rejected by x (No_reject)
- A's gain obtained from x's previous actions (My_gain)

- x's credit as given by A (Given_credit)
- A's credit as given by x (My_credit)
- No. of x's abilities that may lead to A's goal fulfillment (No_abil)

Negotiation

(a) Request generation & selection rules

- Generate (ListOfAgents (Action=N DeadLine Payment))
- Apply rules to compute Payment and rank the agents, based on the gain for executing Action N and on the cooperation profile

 g_N - the gain of N computed from $Gain_A(w, v)$ Pmax - maximum gain for action N

- if Action = N and Max Payment.N = Pmax
 and x isin ListOfAgents and No_req.x > 0
 and My_gain.x > 0 and Given_credit.x > 0
 then Rank.x = 4 and Payment.N = Pmax/2
- Choose agent/agents x with the highest Rank.x
 > Send(A, x) = Request(N, DeadLine, Payment)

(b) Incoming request evaluation & answer generation rules

Request received

Receive(A, x) = Request(N, DeadLine, Payment)

- Check $Ab_A N$ for action N
- Check compliance of *N* to Norms

>> Send(A, x) = Reject(N, Justification)

Justification

NotAbility NotConfNorms

- Check consistency of N with ObA and GoalsA
- Payment > Cons_A(N, Cost) ?
- Check possibility to meet DeadLine

>> Send(A, x) = Accept(N, DeadLine, Payment)

• A adopts N as one of its current intentions

(b) Incoming request evaluation & answer generation rules

Payment < Cons_A(N, Cost) ?

if Action = N and Consume.N = Cost

and Cost > Payment **and** No_req.x > 0

and My_gain.x > 0 and My_credit.x > 0

then Rank.*x* = 4 **and** Given_credit.*x* = Cost - Payment

- Rank the agent
- <u>if</u> the rank is above a certain value
 <u>then</u> update the cooperation profile

Given_credit.x = Cost - payment

>> Send(A, x) = Accept(N, DeadLine, Payment)

or

>> Send(A, x) = ModifyRequest(N, DeadLine, Payment1)

(c) Answer evaluation & reply generation rules

• Acceptance answer received

Receive(A, x) = Accept(N, DeadLine, Payment)

- End negotiation and update cooperation profile
- *Rejection answer received*

Receive(A, x) = Reject(N, Justification)

- End negotiation, update cooperation profile and mental state
- Counterproposal answer received

Receive(A, x) = ModifyRequest(N, DeadLine1, Payment1)

• Use (b) set of rules

6 Argumentation-based negotiation

- Arguments used to persuade the party to accept a negotiation proposal
- Different types of arguments
- Each argument type defines preconditions for its usage. If the preconditions are met, then the agent may use the argument.
- The agent needs a strategy to decide which argument to use
- Most of the times assumes a BDI model

- Appeal to past promise the negotiator A reminds agent B of a past promise regarding the NO, i.e., agent B has promised to the agent A to perform or offer NO in a previous negotiation.
- **Preconditions**: A must check if a promise of NO (future reward) was received in the past in a successfully concluded negotiation.
- Promise of a future reward the negotiator A promises to do a NO for the other agent A at a future time.
- **Preconditions**: A must find one desire of agent B for a future time interval, if possible a desire which can be satisfied through an action (service) that A can perform while B can not.

- Appeal to self interest the agent A believes that concluding the contract for NO is in the best interest of B and tries to persuade B of this fact.
- **Preconditions**: A must find (or infer) one of *B* desires which is satisfied if *B* has NO or, alternatively, A must find another negotiation object NO' that is previously offered on the market and it believes NO is better than NO'.
- Threat the negotiator makes the threat of refusing doing/offering something to B or threatens that it will do something to contradict B's desires.
- **Preconditions**: A must find one of B's desires directly fulfilled by a NO that A can offer or A must find an action that is contradictory to what it believes is one of B's desires.

References

- T.W. Sandholm. Distributed rational decision making. In Multiagent Systems A Modern Approach to Distributed Artificial Intelligence, G. Weiss (Ed.), The MIT Press, 2001, p.201-258.
- M. Wooldrige. An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.
- J.S. Rosenschein, G. Zlotkin. Designing conventions for automated negotiation. In Readings in Agents, M. Huhns & M. Singh (Eds.), Morgan Kaufmann, 1998, p.253-370.
- M.P. Wellman. A market-oriented programming environment and its applications to distributed multicommodity flow problems. Journal of Artificial Intelligence Research, 1, 1993, p.1-23.
- □ N.R. Jennings, e.a., Automated negotiation: prospects, methods, and challenges, Journal of Group Decision and Negotiation, 2000.
- S. Kraus, K. Sycara, A. Evenchik, Reaching agreements through arumentation: a logical model and implementation, Artificial Intelligence, Elsevier Science, 104, 1998, p. 1-69.
- A. Florea, B. Panghe. Achieving Cooperation of Self-interested Agents Based on Cost", In Proceedings of the 15th European Meeting on Cybernetics and System Research, Session: From Agent Theories to Agent Implementation, Vienna, 2000, p.591-596.