

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

Time Series Analysis and Mining with R

Yanchang Zhao

RDataMining.com http://www.rdatamining.com/

18 July 2011

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classificatior

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

6 R Functions & Packages for Time Series

7 Conclusions

<ロト < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

- a free software environment for statistical computing and graphics
- runs on Windows, Linux and MacOS
- widely used in academia and research, as well as industrial applications
- over 3,000 packages
- CRAN Task View: Time Series Analysis http://cran.r-project.org/web/views/TimeSeries.html

Time Series Data in R

R and Time Series Data

- Time Series Decomposition
- Time Series Forecasting
- Time Series Clustering
- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

- class ts
- represents data which has been sampled at equispaced points in time
- frequency=7: a weekly series
- frequency=12: a monthly series
- frequency=4: a quarterly series

R & Data Mining

R and Time Series Data

Time Series Data in R

> a <- ts(1:20, frequency=12, start=c(2011,3))
> print(a)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov		
2011			1	2	3	4	5	6	7	8	9		
2012	11	12	13	14	15	16	17	18	19	20			
	Dec												
2011	10												
2012													
> st:	r(a)												
Time	e-Sei	ries	[1:2	20] 1	from	2011	l to	2013	3: 1	2 3	4 5	6	7
> at	tribu	utes	(a)										
\$tsp													
[1] 2	2011	. 167	2012	2.750) 1	12.00	00						
										_	_		
\$clas	SS						< □		► < Ξ	► < Ξ	► Ē.	Я Q	10

- -

5/42

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classificatior

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

2 Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

6 R Functions & Packages for Time Series

7 Conclusions

<ロト < 部ト < 言ト < 言ト 言 の < で 6/42

What is Time Series Decomposition

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

To decompose a time series into components:

- Trend component: long term trend
- Seasonal component: seasonal variation
- Cyclical component: repeated but non-periodic fluctuations
- Irregular component: the residuals

Data AirPassengers

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

Data AirPassengers: Monthly totals of Box Jenkins international airline passengers, 1949 to 1960. It has $144(=12\times12)$ values.

> plot(AirPassengers)

▶ < ≣ ▶ < ≣ ▶ ≡ < </p>
8/42

Decomposition

- > apts <- ts(AirPassengers, frequency = 12)</pre>
- > f <- decompose(apts)</pre>
- > # seasonal figures
- > plot(f\$figure,type="b")

- Series Data
- Decomposition
- Time Series Forecasting
- Time Series Clustering
- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

<ロト < (引) < (目) < (目) < (日) < (日) < (日) < (日) < (日) < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (

Decomposition

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

> plot(f)

Decomposition of additive time series

10/42

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classificatior

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

3 Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

7 Conclusions

・ロト <
引 ト <
言 ト <
言 ト <
言 、 う へ (*)
11/42
</p>

Time Series Forecasting

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

- To forecast future events based on known past data
- E.g., to predict the opening price of a stock based on its past performance
- Popular models
 - Autoregressive moving average (ARMA)
 - Autoregressive integrated moving average (ARIMA)

A D > A P > A D > A D >

12/42

Forecasting

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

>	# build an ARIMA model
>	<pre>fit <- arima(AirPassengers, order=c(1,0,0),</pre>
+	<pre>list(order=c(2,1,0), period=12))</pre>
>	<pre>fore <- predict(fit, n.ahead=24)</pre>
>	<pre># error bounds at 95% confidence level</pre>
>	U <- fore\$pred + 2*fore\$se
>	L <- fore\$pred - 2*fore\$se
>	<pre>ts.plot(AirPassengers, fore\$pred, U, L,</pre>
+	col=c(1,2,4,4), lty = c(1,1,2,2))
>	<pre>legend("topleft", col=c(1,2,4), lty=c(1,1,2),</pre>
+	c("Actual", "Forecast",
+	"Error Bounds (95% Confidence)"))

Forecasting

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

14/42

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

4 Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

7 Conclusions

<ロト < 部ト < 言ト < 言ト 言 の < () 15/42

Time Series Clustering

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

- To partition time series data into groups based on *similarity* or *distance*, so that time series in the same cluster are similar
- Measure of distance/dissimilarity
 - Euclidean distance
 - Manhattan distance
 - Maximum norm
 - Hamming distance
 - The angle between two vectors (inner product)
 - Dynamic Time Warping (DTW) distance
 - ...

Dynamic Time Warping (DTW)

DTW finds optimal alignment between two time series.

- > library(dtw)
- > idx <- seq(0, 2*pi, len=100)</pre>
- > a <- sin(idx) + runif(100)/10
- > b <- cos(idx)
- > align <- dtw(a, b, step=asymmetricP1, keep=T)</pre>

> dtwPlotTwoWay(align)

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Synthetic Control Chart Time Series

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

- The dataset contains 600 examples of control charts synthetically generated by the process in Alcock and Manolopoulos (1999).
- Each control chart is a time series with 60 values.
- Six classes:
 - 1-100 Normal
 - 101-200 Cyclic
 - 201-300 Increasing trend
 - 301-400 Decreasing trend
 - 401-500 Upward shift
 - 501-600 Downward shift
- http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_ control.html

Synthetic Control Chart Time Series

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering +

Time Series Classification

R Functions & Packages for Time Series

Conclusions

- > # read data into R
- > # sep="": the separator is white space, i.e., one
- > # or more spaces, tabs, newlines or carriage return
- > sc <- read.table("synthetic_control.data",</pre>

header=F, sep="")

- > # show one sample from each class
- > idx <- c(1,101,201,301,401,501)</pre>
- > sample1 <- t(sc[idx,])</pre>
- > plot.ts(sample1, main="")

Six Classes

- R and Time Series Data
- Time Series Decomposition
- Time Series Forecasting

Time Series Clustering

- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

20/42

Hierarchical Clustering with Euclidean distance

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

- > # sample n cases from every class
 - > n <- 10
 - > s <- sample(1:100, n)
- > idx <- c(s, 100+s, 200+s, 300+s, 400+s, 500+s)</pre>
- > sample2 <- sc[idx,]</pre>
- > observedLabels <- c(rep(1,n), rep(2,n), rep(3,n), + rep(4,n), rep(5,n), rep(6,n))
- > # hierarchical clustering with Euclidean distance
- > hc <- hclust(dist(sample2), method="ave")</pre>
- > plot(hc, labels=observedLabels, main="")

Hierarchical Clustering with Euclidean distance

Hierarchical Clustering with Euclidean distance

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

- > # cut tree to get 8 clusters
 - > memb <- cutree(hc, k=8)</pre>
 - > table(observedLabels, memb)

memb

observedLabels	1	2	3	4	5	6	7	8
1	10	0	0	0	0	0	0	0
2	0	3	1	1	3	2	0	0
3	0	0	0	0	0	0	10	0
4	0	0	0	0	0	0	0	10
5	0	0	0	0	0	0	10	0
6	0	0	0	0	0	0	0	10

Hierarchical Clustering with DTW Distance

- R and Time Series Data
- Time Series Decomposition
- Time Series Forecasting

Time Series Clustering

- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

- > myDist <- dist(sample2, method="DTW")</pre>
 - > hc <- hclust(myDist, method="average")</pre>
 - > plot(hc, labels=observedLabels, main="")
 - > # cut tree to get 8 clusters
 - > memb <- cutree(hc, k=8)</pre>
 - > table(observedLabels, memb)

memb

observedLabels	1	2	3	4	5	6	7	8
1	10	0	0	0	0	0	0	0
2	0	4	3	2	1	0	0	0
3	0	0	0	0	0	6	4	0
4	0	0	0	0	0	0	0	10
5	0	0	0	0	0	0	10	0
6	0	0	0	0	0	0	0	10

Hierarchical Clustering with DTW Distance

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

5 Time Series Classification

R Functions & Packages for Time Series

7 Conclusions

<ロト<部ト<単ト<単ト<単ト<単と、単ののの 26/42

Time Series Classification

Time Series Classification

Time Series Classification

- To build a classification model based on labelled time series
- and then use the model to predict the lable of unlabelled time series

Feature Extraction

- Singular Value Decomposition (SVD)
- Discrete Fourier Transform (DFT)
- Discrete Wavelet Transform (DWT)
- Piecewise Aggregate Approximation (PAA)
- Perpetually Important Points (PIP)
- Piecewise Linear Representation
- Symbolic Representation

27/42

・ロト ・ 一下・ ・ ヨト・

Decision Tree (ctree)

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

+

+

+

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

ctree from package party

> classId <- c(rep("1",100), rep("2",100), + rep("3",100), rep("4",100),

rep("5",100), rep("6",100))

> newSc <- data.frame(cbind(classId, sc))</pre>

> library(party)

> ct <- ctree(classId ~ ., data=newSc,</pre>

Decision Tree

> pClass	sId <	:- pr	edio	ct(ct	;)	
> table	(clas	sId,	pC.	lassl	[d)	
I	Clas	sId				
classId	1	2	3	4	5	6
1	100	0	0	0	0	0
2	1	97	2	0	0	0
3	0	0	99	0	1	0
4	0	0	0	100	0	0
5	4	0	8	0	88	0
6	0	3	0	90	0	7

onclusions

Time Series Classification

- > # accuracy
- > (sum(classId==pClassId)) / nrow(sc)

[1] 0.8183333

DWT (Discrete Wavelet Transform)

- R and Time Series Data
- Time Series Decomposition
- Time Series Forecasting
- Time Series Clustering

Time Series Classification

- R Functions & Packages for Time Series
- Conclusions

- Wavelet transform provides a multi-resolution representation using wavelets.
- Haar Wavelet Transform the simplest DWT http://dmr.ath.cx/gfx/haar/

• DFT (Discrete Fourier Transform): another popular feature extraction technique

DWT (Discrete Wavelet Transform)

- R and Time Series Data
- Time Series Decomposition
- Time Series Forecasting
- Time Series Clustering
- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

- > # extract DWT (with Haar filter) coefficients
 - > library(wavelets)
 - > wtData <- NULL
 - > for (i in 1:nrow(sc)) {
 - + a <- t(sc[i,])
 - + wt <- dwt(a, filter="haar", boundary="periodic")
 - + wtData <- rbind(wtData,
 - + unlist(c(wt@W, wt@V[[wt@level]])))
- + }
- > wtData <- as.data.frame(wtData)
- > wtSc <- data.frame(cbind(classId, wtData))</pre>

Decision Tree with DWT

Time Series Classification

> ct <-	ct	ree	(cla	ass	Id	~ .,	data=wtSc, controls =				
+	+ ctree_control(minsplit=20,										
+	+ minbucket=5, maxdepth=5))										
> pClass	sId	<-	pre	edi	ct(ct)					
> table	(cla	ass.	Id,	pC.	las	sId)					
1	pCla	ass	Id								
classId	1	2	3	4	5	6					
1	98	2	0	0	0	0					
2	1	99	0	0	0	0					
3	0	0	81	0	19	0					
4	0	0	0	74	0	26					
5	0	0	16	0	84	0					
6	0	0	0	3	0	97					
> (sum()	cla	ssId	d==p	oCla	ass.	Id))	/ nrow(wtSc)				

[1] 0.8883333

(a) э > plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

k-NN Classification

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

- find the k nearest neighbours of a new instance
- label it by majority voting
- needs an efficient indexing structure for large datasets

> k <- 20

- > newTS <- sc[501,] + runif(100)*15
- > distances <- dist(newTS, sc, method="DTW")</pre>
- > s <- sort(as.vector(distances), index.return=TRUE)</pre>
- > # class IDs of k nearest neighbours
- > table(classId[s\$ix[1:k]])

4 6 3 17

Results of Majority Voting

Label of newTS \leftarrow class 6

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classificatior

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

6 R Functions & Packages for Time Series

7 Conclusions

<ロト < 部ト < 言ト < 言ト こ の Q () 35/42

Functions - Construction, Plot & Smoothing

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

Construction

• ts() create time-series objects (*stats*)

Plot

• plot.ts() plot time-series objects (*stats*)

Smoothing & Filtering

- smoothts() time series smoothing (ast)
- sfilter() remove seasonal fluctuation using moving
 average (ast)

Functions - Decomposition & Forecasting

Decomposition

- decomp() time series decomposition by square-root filter (timsac)
- decompose() classical seasonal decomposition by moving averages (*stats*)
- stl() seasonal decomposition of time series by loess
 (stats)
- tsr() time series decomposition (ast)
- ardec() time series autoregressive decomposition (*ArDec*)

Forecasting

- arima() fit an ARIMA model to a univariate time series (*stats*)
- predict.Arima() forecast from models fitted by arima (stats)

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Packages

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

Packages

- timsac time series analysis and control program
- ast time series analysis
- ArDec time series autoregressive-based decomposition
- ares a toolbox for time series analyses using generalized additive models
- **dse** tools for multivariate, linear, time-invariant, time series models
- **forecast** displaying and analysing univariate time series forecasts
- dtw Dynamic Time Warping find optimal alignment between two time series
- wavelets wavelet filters, wavelet transforms and multiresolution analyses

Online Resources

- R and Time Series Data
- Time Series Decomposition
- Time Series Forecasting
- Time Series Clustering
- Time Series Classification
- R Functions & Packages for Time Series
- Conclusions

• An R Time Series Tutorial

http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm

• Time Series Analysis with R

http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_ intro.pdf

- Using R (with applications in Time Series Analysis) http://people.bath.ac.uk/masgs/time%20series/TimeSeriesR2004.pdf
- CRAN Task View: Time Series Analysis

http://cran.r-project.org/web/views/TimeSeries.html

• R Functions for Time Series Analysis

http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf

R Reference Card for Data Mining;
 R and Data Mining: Examples and Case Studies

http://www.rdatamining.com/

• Time Series Analysis for Business Forecasting

http://home.ubalt.edu/ntsbarsh/stat-data/Forecast.htm 🕢 🗇 🖒 🗸 🚊 🖒 🧠

Outline

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classificatior

R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

6 R Functions & Packages for Time Series

Conclusions

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

- Time series decomposition and forecasting: many R functions and packages available
- Time series classification and clustering: no R functions or packages specially for this purpose; have to work it out by yourself
- Time series classification: extract and build features, and then apply existing classification techniques, such as SVM, k-NN, neural networks, regression and decision trees
- Time series clustering: work out your own distance/similarity metrics, and then use existing clustering techniques, such as k-means and hierarchical clustering
- Techniques specially for classifying/clustering time series data: a lot of research publications, but no R implementations (as far as I know)

The End

R and Time Series Data

Time Series Decomposition

Time Series Forecasting

Time Series Clustering

Time Series Classification

R Functions & Packages for Time Series

Conclusions

Email: RDataMining: Twitter: Group on Linkedin: Group on Google: yanchangzhao@gmail.com http://www.rdatamining.com http://twitter.com/rdatamining http://group.rdatamining.com http://group2.rdatamining.com

