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Game Theory and Its Application
In Economics

(Examples : Static Games of Complete
Information)




L On completion of this presentation you should:
— understand the place of game theory in Economics
— be able to represent and solve simple games
— apply game theory to the issue of collusion

— model Cournot, Bertrand and von Stackelberg
competition

— be able to take a game-theoretic approach to entry
deterrence

— appreciate the limits of game theory



Cournot and Bertrand Competition

1 Cournot competition
— two firms, identical products, firms choose output levels

— each firm’s profit-maximising output depends on the other
firm’s output; hence each firm has a reaction function

— as each firm will operate on its reaction function the point
where they cross is the Cournot Nash equilibrium

1 Bertrand competition
— two firms, identical products, firms choose price levels
— price is forced down to marginal cost



Cournot and Bertrand Competition

4 Cournot competition Model

Imagine that two firms are trying to decide how much of a
specified homogeneous good to produce.

Let g1 and g2 denote the quantities each firm can produce. Let
q denote the sum of g1 and g2

—_a—-b
P=a=b4 = (a—c)q, —ba,2 —ba,g,
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Cournot and Bertrand Competition




Cournot and Bertrand Competition

O Bertrand Competition Model

The assumptions of the model are:
1. 2 firms in the market, 7 € {1,2}.
2. Goods produced are homogenous, = products are perfect substitutes.
3. Firms set prices simultaneously.

4. Each firm has the same constant marginal cost of c.



Cournot and Bertrand Competition

0 What is the equilibrium, or best strategy of each firm?

Using logical arguments:
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Extensive Form Games

Dynamic Games of Complete and Perfect

Information

Game Theory



1 Sequential moves

— One player moves

— Second player observes and then moves
1 Examples

— Industrial Organization

— Chess, Bargaining, Negotiations

Osborne, M. J. and Rubinstein, A. 1994. A Course in Game Theory. MIT Press,
Cambridge, MA, England.

Game Theory



Sequential Decisions

 Suppose that decisions can be made sequentially

dWe can work backwards to determine how people will
behave

— We will examine the last decision first and then work
toward the first decision

1 To do this, we will use a decision tree

13 Game Theory



Extensive Form Games

Extensive form games contain the following:
A game tree

A list of players

The names of players moving at each node
1 A set of allowable actions at each node

d Payoffs specified at each node Unlike normal form
games, It Is easy to depict sequential moves by players in
extensive form games

The decision nodes are partitioned into information sets.

14 Game Theory



Assumptions in Dynamic Extensive Form Games

 All players are rational.
1 Rationality is common knowledge
[ Players move sequentially. (Therefore, also called sequential
games)
[ Players have complete and perfect information
[ Players can see the full game tree including the payoffs
dPlayers can observe and recall all previous moves

15 Game Theory



Example: Prisoners’ Dilemma

Prisoner 2

Don’t
Confess

Confess 5, 5 15, O
Don’t O, 15

Confess

Confess

Prisoner 1

Game Theory 16



Prisoners' Dilemma 1n “Extensive” Form

. This line represents
Pl‘lsonel' ]- a constraint on the
information that prisoner
2 has available. While

DDH"[ C f 2 moves second, he does
e not know what 1 has
C aness ONICSS chosen.

— —— — E— — S— I E—— S S ——  S— S— — — — — — S— S—

Don't
Confess  Confess

Don't

Confess Confess

1.1 15.0 0,15 5,5

Game Theory
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Rules that game trees must satisfy
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Rules that game trees must satisfy

Tree RuLes
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Rules that game trees must satisfy

Tree RulLes
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Rules that game trees must satisfy
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Rules that game trees must satisfy
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Example

Guided exercise (page 19-20 in Watson)

Firm A decides whether to enter firm B’s industry. Firm B

observes this decision.

o If firm A stays out, firm B alone decides whether to advertise. In this case,
firm A obtains zero profits, and firm B obtains $4 million if it advertises
and $3.5 million if it does not.

o If firm A enters, both firms simultaneously decide whether to advertise,
obtaining the following payots.

o If both advertise, both firms earn $3 million.
o If both don’t advertise, both firms earn $5 million.

o If only one firm advertises, then it earns $6 millino and the other earns

$1 million.

Game Theory
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Example

A edrns ouUNgE 1 1L QUS> LUL Gl

Solution: Let E and D denote firm A’s initial alternatives of entering and not
entering B’s industry. Let a and n stand for “advertise” and “not advertise,” re-
spectively. Then the following extensive-form diagram represents the strategic
setting. .
. KTSoN
QUTOED  Exer CLSE o pee A2 whise 3.3

— A

a :
B j 1 1,6
| 6.1
\ a
|
n 5,5

0, 4

0,3.5

Note that simultaneous advertising decisions are captured by assuming that, at
firm A’s second information set, firm A does not know whether firm B chose a
or n. Also note that primes are used in the action labels at firm B’s lower infor-
mation set to differentiate them from the actions taken at B’s top information
set.
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Example

Pepsi and Coke are the largest soft drink manufacturers in
the world. They compete in many geographic markets. They also
compete in product markets of two types. The first type is in flavors; a
form of product differentiation not unlike ready to eat cereal. The second
type of market is in packaging. You can buy Pepsi at a fountain, with
your Big Mac, or packaged in a can or bottle at a 7-11 convenience store.
In this discussion we will focus on entry into a geographic market.

Fight

Fight Coke

Passive

Fight

Passive Coke
-

Enter Fepsi /
& \

Coke

Passive

AWA

Staw Ot
! (0.5)
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Example

Fight when Coke enters, Fight

<Fightenery, Fightou:> when Coke stays out

Fight when Coke enters, Passive

":FIghtEntr'}rf PaSSIVeUI_It} when COke Stays Out

Passive when Coke enters, Fight

{PEISSWEEntrw Flght(jut} when Coke StaYS out

Passive when Coke enters,

<Passiveg,,, Passiveg, > :
Entryy out Passive when Coke stays out

26 Game Theory




Example

Coke will have eight strategic plans, shown in the following table:

<Enter, Fightrighe, Fightpassive>

Enter, Fight in response to
Pepsi's Fight stance, Fight in
response to Pepsi's Passive
stance.

<Enter, Fightrighe, Passivepassive™

Enter, Fight in response to
Pepsi's Fight, Passive in
response to Pepsi's Passive

<Enter, Passiveright, Fightpassive>

Enter, Passive in response to
Pepsi's Fight, Fight in response
to Pepsi's Passive

<Enter, Passiveright,
Passivepassive =

Enter, Passive in response to
Pepsi's Fight, Passive in
response to Pepsi's Passive

<0ut, Fightright, Fighteassive >

Stay Out, Fight in response to
Pepsi's Fight stance, Fight in
response to Pepsi's Passive
stance.

<0ut, Fightrigh:, PAssiVepassive™

Stay Out, Fight in response to
Pepsi's Fight, Passive in
response to Pepsi's Passive

<0ut, Passiveright, Fightpassive>

Stay Out, Passive in response to
Pepsi's Fight, Fight in response
to Pepsi's Passive

<Out, Passiverigh, Passivepassive™

Stay Out, Passive in response to
Pepsi's Fight, Passive in
response to Pepsi's Passive

Game Theory




Example

Pepsi
Fight Passive
<Enter, Fightright, Fightpassive> -2, -1 0, -3
<Enter, Fightright, Passivepassive™> -2, -1 1, 2
<Enter, Passiveright, Fightpassive™> -3, -1 0,-3
<Enter, Passiveright, Passivepassive™> -3, -1 1, 2
Coke <Qut, Fightrignt, Fightpassive> 0,5 0,5
<Qut, Fightrignt, Passivepassive> 0,5 0,5
<Qut, Passiverignt, Fightpassive> 0,5 0,5
<0ut, Passiveright, Passivepassive™> 0,5 0,5

28
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Example

Things to observe about the game as shown:
1. Using IEDS: For Coke, any of the Stay Out strategies weakly dominate

EFF and EPF. On seeing this Pepsi will conclude that its Passive strategy
dominates Fight. Then Coke sees that it is indifferent between EPP and

EFP.
2. There are three Nash equilibria: a. Pepsi plays Fight and Coke chooses

to stay out. b. Coke plays EFP and Pepsi plays Passive. c. Coke plays EPP
and Pepsi plays Passive. The observed outcomes in 2.b. and 2.c. are the

same.
3. The IEDS solution is a Nash equilibrium and is also the solution to the

extensive form of the game using backward induction.

Example 2: In this version of the model Pepsi and Coke must make their
Fight - Passive decision simultaneously. That is, there is imperfect
information. However, the payoffs are such that the solution is equivalent
to using IEDS in the strategic form of the game.



N ={1,2}, Players: P,P,
u,=7s,—s,°—s,S,, U,=8s,-5,°—55,
1 1
S, :fl (Sz) =5(7—52), S, :fz (51) 25(8_31)

s, =2, s, =4,

s, =3, s, =9.

A

s2

E = (51*’52*)

v

N\
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Backward Induction

The conventional method of analyzing perfect-information trees is
the backward-induction algorithm. This involves going to the end
of the tree and working back towards the beginning.

The first step

In the algorithm is to assign to the last player to move, the choice
that maximizes that player’s payoff.

The second step

Is then to turn to the second-to-last player and, taking the last
player’s choice as determined in the first step, to assign to the
second-to-last player the choice that maximizes her payoff. And
SO on.

31 Game Theory



Backward Induction

Theorem
Backward induction gives the entire set of SPE.

Proof: backward induction makes sure that in the restriction of the
strategy profile in question to any subgame is a Nash equilibrium.

@ Backward induction is straightforward for games with perfect
information and finite horizon.

@ For imperfect information games, backward induction proceeds
similarly: we identify the subgames starting from the leaves of the
game tree and replace it with one of the Nash equilibrium payoffs in

the subgame.

32 Game Theory



Backward Induction

Theorem

Every finite perfect information extensive form game G has a pure strategy
§PE.

Proof: Start from the end by backward induction and at each step one
strategy is best response.

Theorem

Every finite extensive form game G has a SPE.

Proof: Same argument as the previous theorem, except that some
subgames need not have perfect information and may have mixed strategy
equilibria.

33 Game Theory
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New example (Slide 57)
Decision tree in a sequential game:

Person 1 chooses first

Person1B

choosés
chooses
no
P 1 Person
ers
chooses ¢ 2 10, 5
chooses
no

Game Theory



Decision tree In a sequential game:
Person 1 chooses first

Given point B, -
Person 2 will
choose yes (20
> 10)

chooses
no

Person

2 . :

choose 1023 Given point C,
Person 2 will

chooseno (10

> 5)

35 Game Theory
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Decision tree In a sequential game:
Person 1 chooses first

Game Theory

If Person 1 is
rational, she will
ignore potential
choices that Person
2 will not make

Example: Person 2
will not choose yes
after Person 1
chooses no



Decision tree In a sequential game:
Person 1 chooses first

If Person 1 knows
that Person 2 is
rational, then she
will choose yes,
since 20> 10

Person 2 makesa -
decision from point
B, and he will
choose yes also

Payout: (20, 20) -

37 Game Theory
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Subgame-example
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Subgame-example
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Subgame-example
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Subgame -Example

2 subgames

43 Game Theory



Example: Backward Induction
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Example: Backward Induction
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Kuhn's Theorem
Also attributed to Zermelo
Every sequential game with perfect information has a Nash equilibrium

The theorem can be proved using backward induction.

46 Game Theory



Subgame Perfect Equilibrium

A subgame of an extensive game is a subtree of the game tree that
includes all information sets containing a node of the subtree.

subgame perfect equilibrium (SPE) of the game, defined by the
property that it induces a Nash equilibrium in every subgame.

47 Game Theory



Solution of an Extensive Form Game

1 Subgame Perfect Equilibrium: For an equilibrium to be
subgame perfect, it has to be a NE for all the subgames as well
as for the entire game.

A subgame is a decision node from the original game along
with the decision nodes and end nodes.

(A Backward induction is used to find SPE

48 Game Theory



Properties of SPE

[ The outcome that is selected by the backward
induction procedure is always a NE of the game with
perfect information.

A SPE is a stronger equilibrium concept than NE
 SPE eliminates NE that involve incredible threats.

d Theorem
Every finite extensive form game has a SPE.

49 Game Theory



Algorithm (Subgame perfect equilibrium)

50 Game Theory



An Advertising Example

Enter

Stay out Stay out
680 730 700 800
=50 0 400 0

51 Game Theory
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680
-50

Advertising Example:

3 proper subgames

730 700
0 400

Game Theory
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Solution of the Advertising Game

Subgame 1 Subgame 2

Enter Enter
Stay out Stay out
680 730 700 800
-50 0 400 0

53 Game Theory
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Solution of the Advertising Game (cont.)

730 700
0 400

SPE of the game is the strategy profile: {A, (stay out,
enter)}

Game Theory



Centipede Game
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Centipede Game

Let us use backwards induction:
1Y) In the last node, P2 is called to move, so he compares
us (Stop) = ux(Continue) since 101>100
so he Stops.
;““_\) In the previous to the last node, P1 knows that P2 will stop at the
last node, then P1l compares '
uy (Stop) > ui(Continue) since 99>98
so he Stops.

In the first node, P1 knows that P2 will stop in the second stage,
since P1 stops in the third, etc., so P1 compares

i (Stop) = ui(Continue) since 10
so P1 Stops.

W e @ b e ¢ JEeo o 4

éi
4
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Centipede Game

o Hence. the unique SPNE of the game is represented as N
(Stopy, Stop;) during every period t € T, and for any finite

lenght T of this centipede game.

o7 Game Theory



Centipede Game

Pi

Player 2.

. Difference between the theoretical prediction and individuals’ observed behavior in
experiments.

e seem to be use backward induction relatively well in the last

1. Bounded rationality. Peopl
what their opponent will do in just a

1-2 stages of the game, so they can easily anticipate

few of posterior stages.
« We could summarize this argument as Bounded rationality, since individuals’ ability to

backward induct is limited, and becomes more hindered as we move further away
from the terminal nodes of the game.

o8 Game Theory




Centipede Game

1 2 1 2 1 2

‘Leave: | Leave | Leave | Leave | Leave | Leave

Player 1

2. Uncertainty about the presence of altruists in the population. Another reason for
their observed decision to leave money on the table could be their uncertainty about
whether their opponent is an altruist.

- |f P2 is an altruist, she values not only her own money, but also the money that P1
receives. Hence, P2 would leave money on the table rather than grab it.

« If you are in the shoes of P1 and you are uncertain about whether P2 is an altruist,
you should then leave money on the table, since P2 will respond leaving it on the
table as well, and wait until the last node at which you are called on to move, where
you grab all the money.

59 Game Theory



Von Stackelberg model
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61

Firm 1 is the leader, Firm 2 is the follower. Demand is given by

p(q1, ¢2) = 100 — g1 — @2

and marginal costs are $10. Operating by backwards induction, we
first solve the follower’s profit maximization problem

B

75 (q1, g2) = 1100 — g1 — g2} g2 — 106

taking FOCs we obtain the BRF2,
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\Von Stackelberg model

functlon since she knows how firm 2 will react to firm 1's
production decision during the first stage of the game. Hence,

LERDERS |
PRATD ai
(g, q) = |100—q — (45 — —2—) g1 — 10q1
B Q2E:?1)

1 1
= 5(90 —q1)g1L = > (90q1 — Q%)

@ Taking FOCs with respect to g1, we obtain

o 2
%*—%—0@90—2%@#% = 45
@ Plugging this result into the follower's BRF (BRF2), we find
G2(22:5) = 45 — —5— = 22.5 "
1S

@ e 4 @ ow o9 EBor woEe e
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\Von Stackelberg model
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\Von Stackelberg model

@ For practice, you can check that this same exercise played
simultaneously (a la Cournot), leads to

s e o B 4 B DAy
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d Game theory
— Simultaneous decisions = NE

— Sequential decisions = Some NE may not occur if
people are rational

d 7Theorem
Every finite extensive form game has a SPE.

QA Kuhn's Theorem
Every sequential game with perfect information has a
Nash equilibrium

65 Game Theory



Outline
1 Repeated Games

2 The Iterated Prisoners’ Dilemma

Game Theory



Why we need a new model of repeated games?

Consider the prisoners’ dilemma, in reality, many crooks do not
squeal, how do we explain this?

Consider the Cournot duopoly, we showed that cartels were
unstable, but in real-life, many countries need to make (or enforce)
anti-collusion laws. How do we explain this?

In real-life, decisions may not be made once only, but we make
decisions based on what we perceive about the future.

In the prisoners’ dilemma, crooks will not squeal because they are
afraid of future retaliation. For cartels, they sustain the collusion
by making promises (or threats) about the future.

Inspired by these observations, we consider situations in which
players interact repeatedly.

67 Game Theory




o If a player only needs to make a single decision, he is playing an
stage game.

@ After the stage game is played, the players again find themselves
facing the same situation, i.e., the stage game is repeated.

@ Taken one stage at a time, the only sensible strategy is to use the
Nash equilibrium strategy for each stage game.

@ However, if the game is viewed as a whole, the strategy set
becomes much richer:

e players may condition their behavior on the past actions of their
opponents, or

e make threats about what they will do in the future, or

e collusion.

68 Game Theory



Repeated Games

— Repeated Games

— Recall Prisoner’s Dilemma
— Unigue NE, both Confess

69 Game Theory



Example: Iterated Prisoners’ Dilemma

@ Consider the following prisoners’ dilemma game with cooperation

(C) and defection (D):

C D
C|33]|05
D |50 1,1

@ Let say the game is repeated just once so there are two stages.
We solve this like any dynamic game by backward induction.

@ In the final stage, there is no future interaction, so the payoff to be
gained is at this final stage. We choose the best response of
playing D. So (D. D) is the NE of this subgame.

@ Consider the first stage (the subgame is the whole game). Since
payoff is fixed for the final stage, the payoff for the entire game is:

C D
C|44 |16
D|61]|22
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Example: Iterated Prisoners’ Dilemma

@ Note that the pure-strategy set for each player in the entire game
s S={CC,CD,DC,DD}.

@ But because we are only interested in a subgame perfect NE, we
only consider two strategies: {CD. DD} (since the last stage is
fixed).

@ Analyzing the above game (previous payoff table), the NE of the
entire game is (DD, DD). So the subgame perfect NE for the
whole game is to play D in both stages.

@ Note that the player cannot induce cooperation:

e In the first stage by promising to cooperate in the 2nd stage (since
they won't);

e In the first stage by threatening to defect in the 2nd stage since this
Is what happens anyway.

71 Game Theory



Infinite Iterated Prisoners’ Dilemma

If the length of the game is infinite, we need the following strategy:

A stationary strategy is one in which the rule of choosing
an action is the same in every stage. Note that this does not
Imply that the action chosen in each stage will be the same.

Examples of stationary strategy are:
@ Play C in every stage.
@ Play D in every stage.
@ Play C if the other player has never played D and play D otherwise.
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Infinite Iterated Prisoners’ Dilemma

A strategy is called a trigger strategy when a change of behavior is
triggered by a single defection.

Example of trigger strategy

@ Consider a trigger strategy sg ="Start by cooperating and
continue to cooperate until the other player defects, then defect

forever after".

o If both players adopt sg, 7i(Sg. Sg) = 100 30 = %

@ Butis (sg. sg) a Nash equilibrium?
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Infinite Iterated Prisoners’ Dilemma

@ The payoff for a stationary strategy is the "infinite sum" of the
payoffs achieved at each stage. Let r;(t) be the payoff for player i
in stage t. The total payoff is > =, r;(1).

@ Unfortunately there is a problem. If both players choose sp ="Play
C in every stage”, then: mj(s¢. S¢) =D 1o 3 = <.

@ |f one chooses sp ="Play D in every stage" and other chooses s¢,
then: m1(sp. Sg) = m2(Sc. Sp) =D 1205 = <.

@ Introduce a discount factor 6 (0 < 6 < 1) so the total payoff is:

20 0tri(8).

@ One can use ¢ to represent (a) inflation; (b) uncertainty of whether
the game will continue, or (c) combination of these.

@ Applying, mi(s¢c.S¢) = Y720 30" = =5.

T1(Sp. S¢) = m2(Sc. Sp) = D10 50! = 5.
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Infinite Iterated Prisoners’ Dilemma

Is (sg, sg) a Nash Equilibrium?

@ Let's do an informal analysis (formal analysis follows).

@ Assume both players are restricted to a pure-strategy set
S = {.’:’;‘;_’.;E Sc. SD}.

@ Suppose player 1 decides to use s¢ instead, payoff is:
m1(Sc. Sg) = m2(Sc. Sg) = 1 . Same result applies if player 2
adopts sq, so this will not be better off than (sg. Sg).

@ Assume player 1 adopts sp, the sequence is:
t=10|1]2 34|65

player1 | sp |[D|D|D | D|D|D
player2 | sg |C|D|D | D |D|D

For player 1: m1(sp.Sg) =5+ 08 + 6% +--- =5+ 725,
@ Player 1 cannot do better by switching from sg to sp if

3 > 54 1 . The inequality is satisfied if 6 > 1/2. So (sg, Sg) Is
a NE if o > 1/2
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MATHEMATICS

1s one ot the essential emanations
of the human spurit;a thing
to be valued in and for itself; s
like art orpoetry.
OSWALD VEBLEN 1924 \-/
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