4.1. Write down all the linear threshold functions L(%)and the corresponding Boolean func-
tions for the following case, where @ is the family of predicates defined on the two-
variable space R (Hint: There are 16 Boolean functions of two variables):

R={xyh, @={b =x ¢ =y}

Does L(P) include all the Boolean functions of x and y? If not, what functions are not

included?



4.2. (a) Consider a rectangular grid. The coordinates of the grid points, ordered lexico-

(0)

graphically, by a row-by-row scan from left to right and bottom to. top are (0,0),
O,D,...,0,M), (1,00, (1,1),.... (LM),...,(N,0), (N, 1),...,(N,M). The edges
of the grid are traversed either horizontally cr vertically. Let T(NV, M ) denote the
number of shortest paths from (0,0) to (N, M). Then justify that T(N, M) is the
solution to the two-dimensional difference equation,

T(N,M) =T(N,M = 1)+ T(N ~ 1, M),
with boundary conditions . |
T'O,M) =1 and  T(N,0) = 1.
Subsequently, show that the solution for T(N, M) is
| +M\=(N+m
M ] N )

/

T(N,M) = (N

The two-dimensicnal difference equation, |
CLINM) = LN = 1L,M)+ LN ~ 1,0~ D),
with boundary conditions‘ | | | |
L(L,M)y=2 =nd LN, 1) = 2N,

occurs in the solution of L(N, M ) given in Eq. (4.3). Verify the solution by any
method you know. -



4.3. Given is a perceptron with analog nonlinear preprocessing units as she'wn in Fig. 4.5.
What types of decision surfaces can be realized? What is the capacity of the machine?
i | |
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FIGURE 4.5

Analog network for realizing any quadratic decision surface in the two input variables, x; and
x2. The connection weights are not shown.
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4.5.

4.6. Apply the perceptron learning algorithm to classify the following three-dimensional

Design a perceptron with one layer of analog preprocessing units to rezlize any circular

decision surfaces. What is the capacity of the machine?

Before applying the perceptron learning algorithm, a pattern vector of the form
1 y2 *** ya)T is extended by appending a | so that the augmented vector is
1 y2 o yar DT Why is this done? Can a different constant be used instead of 1,
for example, 0, 5, =107 In case 2 nonzero constant different from 1 is used, then after
convergence, wnat is the equivalent threshold of the TLU. without the connection to
the input set at this constant value? Can different constants be used for different

patterns?

unipolar binary patterns before augmentation:

Class A: {x} = {(0,0,0), (I,l,-l)}.
Class B: {x} = {(0,0,1), (0,1,1)}

Draw a figure of the perceptron obtained, with its connections, weights, threshold,

transfer characteristic specified.

ar:



4.7. Apply the absolute correction rule to the following unaugmented unipolar binary pat
terns. After augmentation and adjustment, a ternary set results.

C+:{(0,0), 1}, C-: {(1,0), (1, D}

4.8. Apply the fixed-increment rule with ¢ = 1 to the following three-dimensional unipol
binary patterns before augmentation:

C+:{(0,0,0), (1,0,0), (1,0,1), (1,1,0)}
C:{(0,0,1), (0,1,1), (0,1,0), (1,1, 1)}

- Letwp = (=1 —2 —20)7 denote the initial weight vector.

-
&

4.9. Show that the pseudoinverse solution w* = S*d minimizes the mean squared error
1 1
2 _ _ Z - — Trq —
e” = N”d Sw| N(d SW) (d — Sw)

in the case when all entries are real-valued.



4.10. (@) Use the general gradient descent update equation

Wik + 1) = w(k) — c{ ‘9E§‘; x) J |
w=w(k)

and the error function

where T > 0, to derive a perceptron error correction algorithm.

(b) Letc = T = 1. Apply the algorithm obtained in (a) to the patterns in Problem 4.7.

(¢) Discuss the effects of increasing T on the convergence of the algonthm for linearly
separable patterns.



4.11. Consider an augmented pattern vector y(k) = (y1(k) ~*- y(k) )" and a weight vector
W = (W "+ W, wue1)T. Assume that the augmented pattern veciors belonging to class
(- have been multiplied by 1. Call the totality of patterns after this modification the
resulting set or the adjusted augmented pattern set. ]

(a) Show that if the patterns are linearly separable, then a solution W exists such that
Wwly > T for each pattern vector y in the resulting set where 7T is a nonnegative

real number. What is the geometric interpretation in the weight space? |
(b) The normal distance from an extended pattern vector y(k) to a decision hyperplane
defined by wly(k) = 01is - |
g = Wyl
il

Let

= max min YR
v ™7

LR UTC9) A



where N is the number of patterns. Then the condition

gives the optimal decision hyperplane in the sense that the minimum distance from

all the extended training patterns to it is the largest possible.
Find the minimum distance from all training patterns to the decision hyper-

plane obtained after convergence of the following modified fixed-increment rule:

wk) +yk) ifwly(h=T

Wikt D) = { w(k) if wTy(k) > T.



4.12. You are given the following two classes of patterns, before augmentation, with only
one pattern in each class: C. = {(57.595722, —99.759033)} and C- = {(41.887859,
—72.551994)}. Surprisingly, it may take many thousands of iterations for ony of
the verceptron error correction rules to converge to a solution. Augment the pa*wms in
the standard way to C? = {(57.595722,—99.759033, 1)}, and C? = {(41. 837859,
—72.551994, 1)}

(a) Write a computer program 1mplcr_nentmg any of the parceptron ertor correction
rules to verify this. |

h) Provide an explanation as to why it takes so long to solve such a simpie problem,
and suggest a general method to speed up the convergence of the percepiron algo-
vithms that will reduce the iterations required for convergerce to well helow 50 in
this case. |

(¢) Repeat (@) and (b) using the Widrow-Hoff LMS algorithm.

(d) <eneralize your method obtained in (b) to patterns of higher dimensions.



4.13. In inany applications, some components of the training vectors are not sprcified, ei-
tiier because they are not available or because of too much noise in the measuremer::.
‘Thz<e components are called uncertain components. In different patterns, tiw 1ncer-
tain c..mpenents may be different. Generalize the perceptru'l algorithms to petierns
with uncertain components. |

4.14. Derive Eq. (4.43) in text.

JE(e3)
Vi= o (‘1”3 = 2(Qw(k) — P),  (4.43)




4.15. Consider ‘lie adaptive linear element (combiner) shown in Fig. P4.15. The kth 2ug-
mented pattern vector and the weight vector are, respectively, |

¥(k) = [y, yo ooy T and  w(k) = [wywyt o wa wert]T
-The desired response to y(k) is d(k), and the present error of the linear combiner is

ey = d(k) — y(k) * w(k).

" (a) Inthe u-LMS algorithm, an instantaneous gradient V, is calculated to be
| de?
aw(k)’
The weight update based on this estimate instead of the true gradiént is
wk+1) = wk)— uV,,  pu>0,
Show that the weight update simplifies to
Wik + 1) = w(k) + 2pery(k).

7, =

(b) Comment on the use of the Instantaneous gradient, the size of &, and the step size

.gc:rrespondmg fo the period during which a small finite number of exemplars ma
¢ presented without appreciable change in the weight vector. ’
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4.16. In a certain fraining scheme, the weights wy, wa,. .., w, were ordered as follows:
wi>w2>w3>--->wn_1>wn>0. -
The elements x;, X2, .., xp,0fa trainfng pattern vector were also ordered as follows:
0 < x X< x3<--: < Xp-1 < xp.

‘The weighi w; need not be associated ‘Wwith x;. A neural network designer remembers
only that it is possible to obtain the. correct association from 2 particular one-to-one
correspendence between the weight w; and the signal Xpy fori = 1,2, n, which
maximizes the value of the expression | |

n
Ep = > wixy
i=]

over all possible permutations p of the integer index set {12:- n Help the neural
network designer by 1dentifying the expression that produces that maximum.



4.17. Consider two vectors.
vV = (Vl v'Z o vm) .
| = (W Wy " Wi
It is specified that
| Py S>>y >0
05w > wa> 0> W'

It is requued to find a permutation p for 1,2,. ,m corresponding to each of the fol-
lowing cases. Identify each permutatlon by wntmg the expression for the optimization

desired.

(@) §; = ’3"' Vi G has to be a minimum.
(b) $2 = 2 v}w?, has to be a maximum.

I



4.18. Suppose there are eight binary inputs X = (x7X¢ """ xg), where x7Xg *** X can be
considered as a binary number x. Let B(x) te the decimal representation of the binary

number. For example, 35 is the decimal (radix 10) representation of the binary (radix 2)
number 00100011. Design the simplest perceptron to compute the predicate function,

1 B(x) = 8
0 otherwise. -

‘Pl:-

What is the support of W?
Let U be a linear threshold function with respect to the family of predicates @

defined on the retina R = (x7, Xs, ..., Xo). Then ¥ has the representation

W(x) = Ps [Z a;¢i(x) — 9}:
¢ €P '
where x is a subset of R, 8 is a real numbe: denoting threshold, ®; is a ﬁredicate that
belongs to the family ®, and
(1 ify=0
PBD’]“[O if y < 0. |
"What are the supports of the partial predicates ¢;? What is the order of the perceptrox
you have designed? | -



4.19. Repeat Problem 4.18 with ¥, replaced by the predicate function,

O, o= L Bx)= 3 and  B(x)isodd
: 0  otherwise.

4.20. Consider the predicate function,

p-

CWx) = Pelay xi+b > > xxj—cl,
| 2

I!ER vri -
i<j

where a, b, and « are teal constants. What is the order of W(x)? If W(x) is expressed in

the form, |
V(x) = Pgaigi(x) — 0],

write a;, ¢;(x), and 0 in terms of a, b, ¢, and the x;’s. If a perceptron is to implement

¥(x), how many connections to the output threshold logic unit exist, given that the

cardinality of the retina is [R|? o



4.21. What is the order of the predicate o(|x|) = [[x| = M,V [x| = M3)], where M, < M:
and M, M are arbitrary positive integers?

4.22. In a diameter-limited perceptron, for each ¢;(x) € P, the set of points (defined by
specializations of the set of variables {x1,X2,...,%ny In X) on which ¢;(x) depends 18
restricted so as not to exceed a certain fixed diameter (measured, say, according to the
Fuclidean metric) in the Euclidean space. Can a diameter-limited perceptron compute

\p‘convcx ? Wh)ﬂ



4.23. Answer whether each of the following statements i truc or false.
(a) A diameter-limited perceptron can compute W, . er-

(b) The order of the predicate W(IX| < M) is I, where M is an arbitrary but fixed
positive integer and [X| denotes the number of points in the finite seg ¥

(c) The predicate Wepnnectea c2nn0t have an order greater than 3.
(d) The predicate Woy,yex is of order 3.

(e) All Boolean functions of two variables have order |,

(f) The conjunction

MIAYIN Ny Byyy ey,

of the Boolean variables yj, vo, .. . Yn (each either assumes the value | of 0)is of
order 1.

(g) The disjunction

yl\//}-z\/.a.vynéyl+y2+....+}.n

o

of the Boolean variables ¥1» V2, ..., Yo (each assumes either the value | or 0) is of
order 1. -

(h) The counting predicate that recognizes that a finite set X has M points is of
order 4. ' - -



4.24. Each accompanying part has one correct answer. Identify this correct answer by circling
the appropriate letter (capital 4, B, C, etc.). |

(') The Widrow-Hoff léami_ng law is obtained after calculating the gradient VF (w) of
the expression

F(w) = p—2wlq+ w'Rw,

where p is a scalar, w and q are vectors, Risa matrix, and the superscript T denotes
tauspose operation. The gradient VF(w)is

A. —2q9 + Rw.
B. -2+ 2Rw.
C. —q + Rw.

D. —q + 2Rw.

E. none of the above. .

(b) The order of the predicate W(X| = M,V IX| = MV IX] = M;), where 0 <
M <M< M; and My, M-, M; are integers, 18
A 2. B

co O\ I~

B. 4.
C. 6.
D. 8.
E. none of the above.



Tb(ZL;.;(_Ion — 1)), where x; for k = 0,3,...,7 are unipolar binary variables,
are | |

A. both equal to 2.

B. both equal to 1.

C. different from each other.
D. none of the above.

(¢} The orders of the predicates W, = Tp(x7+ x5+ x5+ x4+ X3+ 5xy — 0)and ¥, =



